• Arbic, B. K., 2000: Generation of mid-ocean eddies: the local baroclinic instability hypothesis. Ph.D. thesis, Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 290 pp.

  • Arbic, B. K., and G. R. Flierl, 2004: Baroclinically unstable geostrophic turbulence in the limits of strong and weak bottom Ekman friction: application to midocean eddies. J. Phys. Oceanogr., 34, 22572273, doi:10.1175/1520-0485(2004)034<2257:BUGTIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., R. B. Scott, G. R. Flierl, A. J. Morten, J. G. Richman, and J. F. Shriver, 2012: Nonlinear cascades of surface oceanic geostrophic kinetic energy in the frequency domain. J. Phys. Oceanogr., 42, 15771600, doi:10.1175/JPO-D-11-0151.1.

    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., M. Müller, J. G. Richman, J. F. Shriver, A. J. Morten, R. B. Scott, G. Sérazin, and T. Penduff, 2014: Geostrophic turbulence in the frequency–wavenumber domain: Eddy-driven low-frequency variability. J. Phys. Oceanogr., 44, 20502069, doi:10.1175/JPO-D-13-054.1.

    • Search Google Scholar
    • Export Citation
  • Biastoch, A., and W. Krauss, 1999: The role of mesoscale eddies in the source regions of the Agulhas Current. J. Phys. Oceanogr., 29, 23032317, doi:10.1175/1520-0485(1999)029<2303:TROMEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bischoff, T., and A. F. Thompson, 2014: Configuration of a Southern Ocean storm track. J. Phys. Oceanogr., 44, 30723078, doi:10.1175/JPO-D-14-0062.1.

    • Search Google Scholar
    • Export Citation
  • Brown, J. N., and A. V. Fedorov, 2010: How much energy is transferred from the winds to the thermocline on ENSO time scales? J. Climate, 23, 15631580, doi:10.1175/2009JCLI2914.1.

    • Search Google Scholar
    • Export Citation
  • Chapman, C. C., A. M. Hogg, A. E. Kiss, and S. R. Rintoul, 2015: The dynamics of Southern Ocean storm tracks. J. Phys. Oceanogr., 45, 884903, doi:10.1175/JPO-D-14-0075.1.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, doi:10.1016/j.pocean.2011.01.002.

    • Search Google Scholar
    • Export Citation
  • Chen, G., I. M. Held, and W. A. Robinson, 2007: Sensitivity of the latitude of the surface westerlies to surface friction. J. Atmos. Sci., 64, 28992915, doi:10.1175/JAS3995.1.

    • Search Google Scholar
    • Export Citation
  • Chen, R., G. R. Flierl, and C. Wunsch, 2014a: A description of local and nonlocal eddy–mean flow interaction in a global eddy-permitting state estimate. J. Phys. Oceanogr., 44, 23362352, doi:10.1175/JPO-D-14-0009.1.

    • Search Google Scholar
    • Export Citation
  • Chen, R., J. L. McClean, S. T. Gille, and A. Griesel, 2014b: Isopycnal eddy diffusivities and critical layers in the Kuroshio Extension from an eddying ocean model. J. Phys. Oceanogr., 44, 21912211, doi:10.1175/JPO-D-13-0258.1.

    • Search Google Scholar
    • Export Citation
  • Chen, R., S. T. Gille, J. L. McClean, G. R. Flierl, and A. Griesel, 2015: A multiwavenumber theory for eddy diffusivities and its application to the southeast Pacific (DIMES) region. J. Phys. Oceanogr., 45, 18771896, doi:10.1175/JPO-D-14-0229.1.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1994: Diapycnal mixing in the ocean: The Osborn–Cox model. J. Phys. Oceanogr., 24, 25602576, doi:10.1175/1520-0485(1994)024<2560:DMITOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eden, C., L. Czeschel, and D. Olbers, 2014: Toward energetically consistent ocean models. J. Phys. Oceanogr., 44, 31603184, doi:10.1175/JPO-D-13-0260.1.

    • Search Google Scholar
    • Export Citation
  • Emery, W. J., and R. E. Thomson, 2004: Data Analysis Methods in Physical Oceanography. Elsevier, 638 pp.

  • Ferrari, R., and K. L. Polzin, 2005: Finescale structure of the TS relation in the eastern North Atlantic. J. Phys. Oceanogr., 35, 14371454, doi:10.1175/JPO2763.1.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and C. Wunsch, 2009: Ocean circulation kinetic energy—reservoirs, sources and sinks. Annu. Rev. Fluid Mech., 41, 253282, doi:10.1146/annurev.fluid.40.111406.102139.

    • Search Google Scholar
    • Export Citation
  • Flierl, G. R., 1978: Models of vertical structure and the calibration of two-layer models. Dyn. Atmos. Oceans, 2, 341381, doi:10.1016/0377-0265(78)90002-7.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., M.-A. Pradal, and R. Abernathey, 2015: Isopycnal mixing by mesoscale eddies significantly impacts oceanic anthropogenic carbon uptake. Geophys. Res. Lett., 42, 42494255, doi:10.1002/2015GL064100.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., 2000: Vertical heat transports in the ocean and their effect on time-dependent climate change. Climate Dyn., 16, 501515, doi:10.1007/s003820000059.

    • Search Google Scholar
    • Export Citation
  • Hogg, A. M., M. P. Meredith, D. P. Chambers, E. P. Abrahamsen, C. W. Hughes, and A. K. Morrison, 2015: Recent trends in the Southern Ocean eddy field. J. Geophys. Res. Oceans, 120, 257267, doi:10.1002/2014JC010470.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., 2010: Ocean Circulation: Wind-Driven and Thermohaline Processes.Cambridge University Press, 806 pp.

  • Huang, R. X., W. Wang, and L. L. Liu, 2006: Decadal variability of wind-energy input to the World Ocean. Deep-Sea Res. II, 53, 3141, doi:10.1016/j.dsr2.2005.11.001.

    • Search Google Scholar
    • Export Citation
  • Ioannou, P., and R. S. Lindzen, 1986: Baroclinic instability in the presence of barotropic jets. J. Atmos. Sci., 43, 29993014, doi:10.1175/1520-0469(1986)043<2999:BIITPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, T. J., R. H. Stewart, C. K. Shum, and B. D. Tapley, 1992: Distribution of Reynolds stress carried by mesoscale variability in the Antarctic Circumpolar Current. Geophys. Res. Lett., 19, 12011204, doi:10.1029/92GL01287.

    • Search Google Scholar
    • Export Citation
  • Kang, D., and E. N. Curchitser, 2015: Energetics of eddy–mean flow interactions in the Gulf Stream region. J. Phys. Oceanogr., 45, 11031120, doi:10.1175/JPO-D-14-0200.1.

    • Search Google Scholar
    • Export Citation
  • Kang, D., E. N. Curchitser, and A. Rosati, 2016: Seasonal variability of the Gulf Stream kinetic energy. J. Phys. Oceanogr., 46, 11891207, doi:10.1175/JPO-D-15-0235.1.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., 1997: On the parameterization of eddy transfer. Part I: Theory. J. Mar. Res., 55, 11711197, doi:10.1357/0022240973224102.

    • Search Google Scholar
    • Export Citation
  • Kontoyiannis, H., 1997: Quasi-geostrophic modeling of mixed instabilities in the Gulf Stream near 73°W. Dyn. Atmos. Oceans, 26, 133158, doi:10.1016/S0377-0265(96)00488-5.

    • Search Google Scholar
    • Export Citation
  • Liang, J.-H., J. C. McWilliams, J. Kurian, F. Colas, P. Wang, and Y. Uchiyama, 2012: Mesoscale variability in the northeastern tropical Pacific: Forcing mechanisms and eddy properties. J. Geophys. Res., 117, C07003, doi:10.1029/2012JC008008.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7A, 157167, doi:10.1111/j.2153-3490.1955.tb01148.x.

    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., J. McWilliams, and A. Shchepetkin, 2003: Equilibrium structure and dynamics of the California Current System. J. Phys. Oceanogr., 33, 753783, doi:10.1175/1520-0485(2003)33<753:ESADOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mata, M., S. Wijffels, J. Church, and M. Tomczak, 2006: Eddy shedding and energy conversions in the East Australian Current. J. Geophys. Res., 111, C09034, doi:10.1029/2006JC003592.

    • Search Google Scholar
    • Export Citation
  • Menemenlis, D., J. Campin, P. Heimbach, C. Hill, T. Lee, A. Nguyen, M. Schodlock, and H. Zhang, 2008: ECCO2: High resolution global ocean and sea ice data synthesis. Mercator Ocean Quarterly Newsletter, No. 31, Mercator Ocean, Ramonville Saint-Agne, France, 13–21.

  • Meredith, M. P., and A. M. Hogg, 2006: Circumpolar response of Southern Ocean eddy activity to a change in the southern annular mode. Geophys. Res. Lett., 33, L16608, doi:10.1029/2006GL026499.

    • Search Google Scholar
    • Export Citation
  • Murakami, S., 2011: Atmospheric local energetics and energy interactions between mean and eddy fields. Part I: Theory. J. Atmos. Sci., 68, 760768, doi:10.1175/2010JAS3664.1.

    • Search Google Scholar
    • Export Citation
  • Murakami, S., R. Ohgaito, and A. Abe-Ouchi, 2011: Atmospheric local energetics and energy interactions between mean and eddy fields. Part II: An example for the Last Glacial Maximum climate. J. Atmos. Sci., 68, 533552, doi:10.1175/2010JAS3583.1.

    • Search Google Scholar
    • Export Citation
  • Nakamura, N., 1993: An illustrative model of instabilities in meridionally and vertically sheared flows. J. Atmos. Sci., 50, 357376, doi:10.1175/1520-0469(1993)050<0357:AIMOII>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Oort, A. H., and J. P. Peixóto, 1983: Global angular momentum and energy balance requirements from observations. Advances in Geophysics, Vol. 25, Academic Press, 355–490, doi:10.1016/S0065-2687(08)60177-6.

    • Search Google Scholar
    • Export Citation
  • Oort, A. H., S. Ascher, S. Levitus, and J. Peixóto, 1989: New estimates of the available potential energy in the world ocean. J. Geophys. Res., 94, 31873200, doi:10.1029/JC094iC03p03187.

    • Search Google Scholar
    • Export Citation
  • Oort, A. H., L. Anderson, and J. Peixóto, 1994: Estimates of the energy cycle of the oceans. J. Geophys. Res., 99, 76657688, doi:10.1029/93JC03556.

    • Search Google Scholar
    • Export Citation
  • Panetta, R. L., 1993: Zonal jets in wide baroclinically unstable regions: persistence and scale selection. J. Atmos. Sci., 50, 20732106, doi:10.1175/1520-0469(1993)050<2073:ZJIWBU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. Springer-Verlag, 710 pp.

  • Phillips, N. A., 1954: Energy transformations and meridional circulations associated with simple baroclinic waves in a two-level, quasi-geostrophic model. Tellus, 6A, 273286, doi:10.1111/j.2153-3490.1954.tb01123.x.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2004: Seasonal modulations in the eddy field of the South Pacific Ocean. J. Phys. Oceanogr., 34, 15151527, doi:10.1175/1520-0485(2004)034<1515:SMITEF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2010: Eddy-mean flow interaction in the decadally modulating Kuroshio Extension system. Deep-Sea Res. II, 57, 10981110, doi:10.1016/j.dsr2.2008.11.036.

    • Search Google Scholar
    • Export Citation
  • Salmon, R., 1980: Baroclinic instability and geostrophic turbulence. Geophys. Astrophys. Fluid Dyn., 15, 167211, doi:10.1080/03091928008241178.

    • Search Google Scholar
    • Export Citation
  • Scott, R. B., and F. Wang, 2005: Direct evidence of an oceanic inverse kinetic energy cascade from satellite altimetry. J. Phys. Oceanogr., 35, 16501666, doi:10.1175/JPO2771.1.

    • Search Google Scholar
    • Export Citation
  • Scott, R. B., and B. K. Arbic, 2007: Spectral energy fluxes in geostrophic turbulence: Implications for ocean energetics. J. Phys. Oceanogr., 37, 673688, doi:10.1175/JPO3027.1.

    • Search Google Scholar
    • Export Citation
  • Scott, R. B., and Y. Xu, 2009: An update on the wind power input to the surface geostrophic flow of the world ocean. Deep-Sea Res. I, 56, 295304, doi:10.1016/j.dsr.2008.09.010.

    • Search Google Scholar
    • Export Citation
  • Spence, P., O. A. Saenko, M. Ebay, and A. J. Weaver, 2009: The Southern Ocean overturning: Parameterized versus permitted eddies. J. Phys. Oceanogr., 39, 16341651, doi:10.1175/2009JPO4120.1.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., and C. Wunsch, 1999: Temporal changes in eddy energy of the oceans. Deep-Sea Res. II, 46, 77108, doi:10.1016/S0967-0645(98)00106-4.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., 2010: Jet formation and evolution in baroclinic turbulence with simple topography. J. Phys. Oceanogr., 40, 257278, doi:10.1175/2009JPO4218.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., and W. R. Young, 2006: Scaling baroclinic eddy fluxes: Vortices and energy balance. J. Phys. Oceanogr., 36, 720738, doi:10.1175/JPO2874.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., and W. R. Young, 2007: Two-layer baroclinic eddy heat fluxes: Zonal flows and energy balance. J. Atmos. Sci., 64, 32143231, doi:10.1175/JAS4000.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., and A. C. Naveira-Garabato, 2014: Equilibration of the Antarctic Circumpolar Current by standing meanders. J. Phys. Oceanogr., 44, 18111828, doi:10.1175/JPO-D-13-0163.1.

    • Search Google Scholar
    • Export Citation
  • Tulloch, R., J. Marshall, C. Hill, and K. S. Smith, 2011: Scales, growth rates, and spectral fluxes of baroclinic instability in the ocean. J. Phys. Oceanogr., 41, 10571076, doi:10.1175/2011JPO4404.1.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 745 pp.

  • Venaille, A., G. K. Vallis, and K. S. Smith, 2011: Baroclinic turbulence in the ocean: analysis with primitive equation and quasigeostrophic simulations. J. Phys. Oceanogr., 41, 16051623, doi:10.1175/JPO-D-10-05021.1.

    • Search Google Scholar
    • Export Citation
  • von Storch, J. S., C. Eden, I. Fast, H. Haak, D. Hernández-Deckers, E. Maier-Reimer, J. Marotzke, and D. Stammer, 2012: An estimate of the Lorenz energy cycle for the world ocean based on the 1/10° STORM/NCEP simulation. J. Phys. Oceanogr., 42, 21852205, doi:10.1175/JPO-D-12-079.1.

    • Search Google Scholar
    • Export Citation
  • Waterman, S. N., and S. R. Jayne, 2011: Eddy-mean flow interactions in the along-stream development of a western boundary current jet: An idealized model study. J. Phys. Oceanogr., 41, 682707, doi:10.1175/2010JPO4477.1.

    • Search Google Scholar
    • Export Citation
  • Williams, R. G., C. Wilson, and C. W. Hughes, 2007: Ocean and atmosphere storm tracks: The role of eddy vorticity forcing. J. Phys. Oceanogr., 37, 22672289, doi:10.1175/JPO3120.1.

    • Search Google Scholar
    • Export Citation
  • Winters, K. B., P. N. Lombard, J. J. Riley, and E. A. D’Asaro, 1995: Available potential energy and mixing in density-stratified fluids. J. Fluid Mech., 289, 115128, doi:10.1017/S002211209500125X.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1998: The work done by the wind on the oceanic general circulation. J. Phys. Oceanogr., 28, 23322340, doi:10.1175/1520-0485(1998)028<2332:TWDBTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2015: Modern Observational Physical Oceanography: Understanding the Global Ocean. Princeton University Press, 493 pp.

  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314, doi:10.1146/annurev.fluid.36.050802.122121.

    • Search Google Scholar
    • Export Citation
  • Zemskova, V. E., B. L. White, and A. Scotti, 2015: Available potential energy and the general circulation: Partitioning wind, buoyancy forcing, and diapycnal mixing. J. Phys. Oceanogr., 45, 15101531, doi:10.1175/JPO-D-14-0043.1.

    • Search Google Scholar
    • Export Citation
  • Zhai, X., H. L. Johnson, D. P. Marshall, and C. Wunsch, 2012: On the wind power input to the ocean general circulation. J. Phys. Oceanogr., 42, 13571365, doi:10.1175/JPO-D-12-09.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and P. H. Stone, 2010: Baroclinic eddy equilibration under specified seasonal forcing. J. Atmos. Sci., 67, 26322648, doi:10.1175/2010JAS3392.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 421 209 16
PDF Downloads 366 181 15

Time-Dependent Eddy-Mean Energy Diagrams and Their Application to the Ocean

View More View Less
  • 1 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
  • | 2 California Institute of Technology, Pasadena, California
  • | 3 Massachusetts Institute of Technology, Cambridge, Massachusetts
Restricted access

Abstract

Insight into the global ocean energy cycle and its relationship to climate variability can be gained by examining the temporal variability of eddy–mean flow interactions. A time-dependent version of the Lorenz energy diagram is formulated and applied to energetic ocean regions from a global, eddying state estimate. The total energy in each snapshot is partitioned into three components: energy in the mean flow, energy in eddies, and energy temporal anomaly residual, whose time mean is zero. These three terms represent, respectively, correlations between mean quantities, correlations between eddy quantities, and eddy-mean correlations. Eddy–mean flow interactions involve energy exchange among these three components. The temporal coherence about energy exchange during eddy–mean flow interactions is assessed. In the Kuroshio and Gulf Stream Extension regions, a suppression relation is manifested by a reduction in the baroclinic energy pathway to the eddy kinetic energy (EKE) reservoir following a strengthening of the barotropic energy pathway to EKE; the baroclinic pathway strengthens when the barotropic pathway weakens. In the subtropical gyre and Southern Ocean, a delay in energy transfer between different reservoirs occurs during baroclinic instability. The delay mechanism is identified using a quasigeostrophic, two-layer model; part of the potential energy in large-scale eddies, gained from the mean flow, cascades to smaller scales through eddy stirring before converting to EKE. The delay time is related to this forward cascade and scales linearly with the eddy turnover time. The relation between temporal variations in wind power input and eddy–mean flow interactions is also assessed.

Corresponding author address: Ru Chen, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Dr., Mail Code 0230, La Jolla, CA 92093-0230. E-mail: ruchen@alum.mit.edu

Abstract

Insight into the global ocean energy cycle and its relationship to climate variability can be gained by examining the temporal variability of eddy–mean flow interactions. A time-dependent version of the Lorenz energy diagram is formulated and applied to energetic ocean regions from a global, eddying state estimate. The total energy in each snapshot is partitioned into three components: energy in the mean flow, energy in eddies, and energy temporal anomaly residual, whose time mean is zero. These three terms represent, respectively, correlations between mean quantities, correlations between eddy quantities, and eddy-mean correlations. Eddy–mean flow interactions involve energy exchange among these three components. The temporal coherence about energy exchange during eddy–mean flow interactions is assessed. In the Kuroshio and Gulf Stream Extension regions, a suppression relation is manifested by a reduction in the baroclinic energy pathway to the eddy kinetic energy (EKE) reservoir following a strengthening of the barotropic energy pathway to EKE; the baroclinic pathway strengthens when the barotropic pathway weakens. In the subtropical gyre and Southern Ocean, a delay in energy transfer between different reservoirs occurs during baroclinic instability. The delay mechanism is identified using a quasigeostrophic, two-layer model; part of the potential energy in large-scale eddies, gained from the mean flow, cascades to smaller scales through eddy stirring before converting to EKE. The delay time is related to this forward cascade and scales linearly with the eddy turnover time. The relation between temporal variations in wind power input and eddy–mean flow interactions is also assessed.

Corresponding author address: Ru Chen, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Dr., Mail Code 0230, La Jolla, CA 92093-0230. E-mail: ruchen@alum.mit.edu
Save