• Anctil, F., and M. A. Donelan, 1996: Air–water momentum flux observed over shoaling waves. J. Phys. Oceanogr., 26, 13441353, doi:10.1175/1520-0485(1996)026<1344:AMFOOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Babanin, A. V., and Y. P. Soloviev, 1998: Field investigation of transformation of the wind wave frequency spectrum with fetch and the stage of development. J. Phys. Oceanogr., 28, 563576, doi:10.1175/1520-0485(1998)028<0563:FIOTOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Badulin, S. I., A. N. Pushkarev, D. Resio, and V. E. Zakharov, 2005: Self-similarity of wind-driven seas. Nonlinear Processes Geophys., 12, 891946, doi:10.5194/npg-12-891-2005.

    • Search Google Scholar
    • Export Citation
  • Badulin, S. I., A. V. Babanin, D. Resio, and V. Zakharov, 2007: Weakly turbulent laws of wind–wave growth. J. Fluid Mech., 591, 339378, doi:10.1017/S0022112007008282.

    • Search Google Scholar
    • Export Citation
  • Black, P. G., and Coauthors, 2007: Air–sea exchange in hurricanes: Synthesis of observations from the Coupled Boundary Layer Air–Sea Transfer experiment. Bull. Amer. Meteor. Soc., 88, 357374, doi:10.1175/BAMS-88-3-357.

    • Search Google Scholar
    • Export Citation
  • Burling, R. W., 1959: The spectrum of waves at short fetches. Dtsch. Hydrogr. Z., 12, 96117, doi:10.1007/BF02019818.

  • Dean, R. G., and R. A. Dalrymple, 1991: Water Wave Mechanics for Engineers and Scientist. World Scientific, 353 pp.

  • Dobson, F., W. Perrie, and B. Toulany, 1989: On the deep-water fetch laws for wind-generated surface gravity waves. Atmos.–Ocean, 27, 210236, doi:10.1080/07055900.1989.9649334.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., 1979: On the fraction of wind momentum retained by waves. Marine Forecasting, J. C. J. Nihoul, Ed., Elsevier, 141–159.

  • Donelan, M. A., J. Hamilton, and W. H. Hui, 1985: Directional spectra of wind-generated waves. Philos. Trans. Roy. Soc. London, A315, 509562, doi:10.1098/rsta.1985.0054.

    • Search Google Scholar
    • Export Citation
  • Felizardo, F., and W. K. Melville, 1995: Correlations between ambient noise and the ocean surface wave field. J. Phys. Oceanogr., 25, 513532, doi:10.1175/1520-0485(1995)025<0513:CBANAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gagnaire-Renou, E., M. Benoit, and S. I. Badulin, 2011: On weakly turbulent scaling of wind sea in simulations of fetch-limited growth. J. Fluid Mech., 669, 178213, doi:10.1017/S0022112010004921.

    • Search Google Scholar
    • Export Citation
  • García-Nava, H., F. J. Ocampo-Torres, P. Osuna, and M. A. Donelan, 2009: Wind stress in the presence of swell under moderate to strong wind conditions. J. Geophys. Res., 114, C12008, doi:10.1029/2009JC005389.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., and Coauthors, 1973: Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Ergänzungscheft zur Deutschen Hydrographischen Zeitschrift Reihe A 12, 93 pp.

  • Holthuijsen, L. H., M. D. Powell, and J. D. Pietrzak, 2012: Wind and waves in extreme hurricanes. J. Geophys. Res., 117, C09003, doi:10.1029/2012JC007983.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 2004: Influence of wavelength on the parameterization of drag coefficient and surface roughness. J. Oceanogr., 60, 835841, doi:10.1007/s10872-005-5776-3.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 2005a: Comparison of the ocean surface wind stress computed with different parameterization functions of the drag coefficient. J. Oceanogr., 61, 91107, doi:10.1007/s10872-005-0022-6.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 2005b: Drag coefficient, dynamic roughness and reference wind speed. J. Oceanogr., 61, 399413, doi:10.1007/s10872-005-0050-2.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 2006: Duration- and fetch-limited growth functions of wind-generated waves parameterized with three different scaling wind velocities. J. Geophys. Res., 111, C02005, doi:10.1029/2005JC003180.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 2009: Estimating the effective energy transfer velocity at air-sea interface. J. Geophys. Res., 114, C11011, doi:10.1029/2009JC005497.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 2011: A note on the ocean surface roughness spectrum. J. Atmos. Oceanic Technol., 28, 436443, doi:10.1175/2010JTECHO812.1.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 2016: Fetch- and duration-limited nature of surface wave growth inside tropical cyclones: With applications to air-sea exchange and remote sensing. J. Phys. Oceanogr., 46, 4156, doi:10.1175/JPO-D-15-0173.1.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., and D. W. Wang, 2004: Field measurements of duration limited growth of wind-generated ocean surface waves at young stage of development. J. Phys. Oceanogr., 34, 23162326, doi:10.1175/1520-0485(2004)034<2316:FMODGO>2.0.CO;2; Corrigendum, 35, 268270, doi:10.1175/JPO-2731.1.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., and M. A. Sletten, 2008: Energy dissipation of wind-generated waves and whitecap coverage. J. Geophys. Res., 113, C02012, doi:10.1029/2007JC004277; Corrigendum, 114, C02015, doi:10.1029/2008JC005244.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., H. García-Nava, and F. J. Ocampo-Torres, 2011a: Dimensionally consistent similarity relation of ocean surface friction coefficient in mixed seas. J. Phys. Oceanogr., 41, 12271238, doi:10.1175/2011JPO4566.1.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., H. García-Nava, and F. J. Ocampo-Torres, 2011b: Observations of wind wave development in mixed seas and unsteady wind forcing. J. Phys. Oceanogr., 41, 23432362, doi:10.1175/JPO-D-11-044.1.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., D. M. Burrage, D. W. Wang, and J. C. Wesson, 2013: Ocean surface roughness spectrum in high wind condition for microwave backscatter and emission computations. J. Atmos. Oceanic Technol., 30, 21682188, doi:10.1175/JTECH-D-12-00239.1.

    • Search Google Scholar
    • Export Citation
  • Janssen, J. A. M., 1997: Does wind stress depend on sea-state or not?—A statistical error analysis of HEXMAX data. Bound.-Layer Meteor., 83, 479503, doi:10.1023/A:1000336814021.

    • Search Google Scholar
    • Export Citation
  • Janssen, P., 2004: The Interaction of Ocean Waves and Wind. Cambridge University Press, 300 pp.

  • Jarosz, E., D. A. Mitchell, D. W. Wang, and W. J. Teague, 2007: Bottom-up determination of air-sea momentum exchange under a major tropical cyclone. Science, 315, 17071709, doi:10.1126/science.1136466.

    • Search Google Scholar
    • Export Citation
  • Kahma, K. K., and C. J. Calkoen, 1992: Reconciling discrepancies in the observed growth of wind-generated waves. J. Phys. Oceanogr., 22, 13891405, doi:10.1175/1520-0485(1992)022<1389:RDITOG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kahma, K. K., and C. J. Calkoen, 1994: Growth curve observations. Dynamics and Modeling of Ocean Waves, G. J. Komen et al., Eds., Cambridge University Press, 74–182.

  • Kim, D.-J., W. M. Moon, S.-E. Park, J.-E. Kim, and H.-S. Lee, 2007: Dependence of waterline mapping on radar frequency used for SAR images in intertidal areas. IEEE Geosci. Remote Sens. Lett., 4, 269273, doi:10.1109/LGRS.2006.888843.

    • Search Google Scholar
    • Export Citation
  • Komen, G. J., L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann, and P. A. E. M. Jessen, Eds., 1994: Dynamics and Modeling of Ocean Waves. Cambridge University Press, 532 pp.

  • Merzi, N., and W. H. Graf, 1985: Evaluation of the drag coefficient considering the effects of mobility of the roughness elements. Ann. Geophys., 3, 473478.

    • Search Google Scholar
    • Export Citation
  • Moon, I.-J., I. Ginis, T. Hara, H. L. Tolman, C. W. Wright, and E. J. Walsh, 2003: Numerical simulation of sea surface directional wave spectra under hurricane wind forcing. J. Phys. Oceanogr., 33, 16801706, doi:10.1175/2410.1.

    • Search Google Scholar
    • Export Citation
  • Ocampo-Torres, F. J., H. García-Nava, R. Durazo, P. Osuna, G. M. Díaz Méndez, and H. C. Graber, 2011: The INTOA experiment: A study of ocean-atmosphere interactions under moderate to strong offshore winds and opposing swell conditions, in the Gulf of Tehuantepec, Mexico. Bound.-Layer Meteor., 138, 433451, doi:10.1007/s10546-010-9561-5.

    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1985: Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech., 156, 505531, doi:10.1017/S0022112085002221.

    • Search Google Scholar
    • Export Citation
  • Pierson, W. J., and L. Moskowitz, 1964: A proposed spectral form for full, developed wind seas based on the similarity theory of S. A. Kitaigorodskii. J. Geophys. Res., 69, 51815190, doi:10.1029/JZ069i024p05181.

    • Search Google Scholar
    • Export Citation
  • Plant, W. J., 1982: A relationship between wind stress and wave slope. J. Geophys. Res., 87, 19619167, doi:10.1029/JC087iC03p01961.

  • Powell, M. D., 2006: Drag coefficient distribution and wind speed dependence in tropical cyclones. Final Rep. to the NOAA JHT Program, 26 pp.

  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283, doi:10.1038/nature01481.

    • Search Google Scholar
    • Export Citation
  • Romero, L., and W. K. Melville, 2010: Airborne observations of fetch-limited waves in the Gulf of Tehuantepec. J. Phys. Oceanogr., 40, 441465, doi:10.1175/2009JPO4127.1.

    • Search Google Scholar
    • Export Citation
  • Sletten, M. A., and P. A. Hwang, 2011: The effect of wind-wave rowth on SAR-based waterline maps. IEEE Trans. Geosci. Remote Sens., 49, 51405149, doi:10.1109/TGRS.2011.2154362.

    • Search Google Scholar
    • Export Citation
  • Sverdrup, H. U., and W. H. Munk, 1947: Wind, sea, and swell: Theory of relations for forecasting. U. S. Navy Hydrographic Office Tech. Rep. 1, 60 pp.

  • Terray, E. A., M. A. Donelan, Y. C. Agrawal, W. M. Drennan, K. K. Kahma, A. J. Williams, P. A. Hwang, and S. A. Kitaigorodskii, 1996: Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr., 26, 792807, doi:10.1175/1520-0485(1996)026<0792:EOKEDU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Walsh, E. J., D. W. Hancock, D. E. Hines, R. N. Swift, and J. F. Scott, 1985: Directional wave spectra measured with the surface contour radar. J. Phys. Oceanogr., 15, 566592, doi:10.1175/1520-0485(1985)015<0566:DWSMWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Walsh, E. J., D. W. Hancock, D. E. Hines, R. N. Swift, and J. F. Scott, 1989: An observation of the directional wave spectrum evolution from shoreline to fully developed. J. Phys. Oceanogr., 19, 670690, doi:10.1175/1520-0485(1989)019<0670:AOOTDW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wright, C. W., and Coauthors, 2001: Hurricane directional wave spectrum spatial variation in the open ocean. J. Phys. Oceanogr., 31, 24722488, doi:10.1175/1520-0485(2001)031<2472:HDWSSV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., 1988: Parametric hurricane wave prediction model. J. Waterw. Port Coastal Ocean Eng., 114, 637652, doi:10.1061/(ASCE)0733-950X(1988)114:5(637).

    • Search Google Scholar
    • Export Citation
  • Young, I. R., 1998: Observations of the spectra of hurricane generated waves. Ocean Eng., 25, 261276, doi:10.1016/S0029-8018(97)00011-5.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., 1999: Wind Generated Ocean Waves. Elsevier, 288 pp.

  • Young, I. R., 2003: A review of the sea state generated by hurricanes. Mar. Struct., 16, 201218, doi:10.1016/S0951-8339(02)00054-0.

  • Young, I. R., 2006: Directional spectra of hurricane wind waves. J. Geophys. Res., 111, C08020, doi:10.1029/2006JC003540.

  • Young, I. R., and G. Ph. van Vledder, 1993: A review of the central role of nonlinear interactions in wind-wave evolution. Philos. Trans. Roy. Soc. London, A342, 505524, doi:10.1098/rsta.1993.0030.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., and J. Vinoth, 2013: An “extended fetch” model for the spatial distribution of tropical cyclone wind–waves as observed by altimeter. Ocean Eng., 70, 1424, doi:10.1016/j.oceaneng.2013.05.015.

    • Search Google Scholar
    • Export Citation
  • Zakharov, V. E., 2005: Theoretical interpretation of fetch limited wind-driven sea observations. Nonlinear Processes Geophys., 12, 10111020, doi:10.5194/npg-12-1011-2005.

    • Search Google Scholar
    • Export Citation
  • Zakharov, V. E., S. I. Badulin, P. A. Hwang, and G. Caulliez, 2015: Universality of sea wave growth and its physical roots. J. Fluid Mech., 780, 503535, doi:10.1017/jfm.2015.468.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 302 123 8
PDF Downloads 231 85 5

Azimuthal and Radial Variation of Wind-Generated Surface Waves inside Tropical Cyclones

View More View Less
  • 1 Remote Sensing Division, Naval Research Laboratory, Washington, D.C.
  • | 2 NOAA/Earth System Research Laboratory, Physical Sciences Division, Boulder, Colorado
Restricted access

Abstract

For wind-generated waves, the wind-wave triplets (reference wind speed, significant wave height, and spectral peak wave period) are intimately connected through the fetch- or duration-limited wave growth functions. The full set of the triplets can be obtained knowing only one of the three, together with the input of fetch (duration) information using the pair of fetch-limited (duration limited) wave growth functions. The air–sea energy and momentum exchanges are functions of the wind-wave triplets, and they can be quantified with the wind-wave growth functions. Previous studies have shown that the wave development inside hurricanes follows essentially the same growth functions established for steady wind forcing conditions. This paper presents the analysis of wind-wave triplets collected inside Hurricane Bonnie 1998 at category 2 stage along 10 transects radiating from the hurricane center. A fetch model is formulated for any location inside the hurricane. Applying the fetch model to the 2D hurricane wind field, the detailed spatial distribution of the wave field and the associated energy and momentum exchanges inside the hurricane are investigated. For the case studied, the energy and momentum exchanges display two local maxima resulting from different weightings of wave age and wind speed. Referenced to the hurricane heading, the exchanges on the right half plane of the hurricane are much stronger than those on the left half plane. Integrated over the hurricane coverage area, the right-to-left ratio is about 3:1 for both energy and momentum exchanges. Computed exchange rates with and without considering wave properties differ significantly.

U.S. Naval Research Laboratory Publication Number JA/7260—16-0044.

Corresponding author address: Dr. Paul A. Hwang, Remote Sensing Division, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375. E-mail: paul.hwang@nrl.navy.mil

Abstract

For wind-generated waves, the wind-wave triplets (reference wind speed, significant wave height, and spectral peak wave period) are intimately connected through the fetch- or duration-limited wave growth functions. The full set of the triplets can be obtained knowing only one of the three, together with the input of fetch (duration) information using the pair of fetch-limited (duration limited) wave growth functions. The air–sea energy and momentum exchanges are functions of the wind-wave triplets, and they can be quantified with the wind-wave growth functions. Previous studies have shown that the wave development inside hurricanes follows essentially the same growth functions established for steady wind forcing conditions. This paper presents the analysis of wind-wave triplets collected inside Hurricane Bonnie 1998 at category 2 stage along 10 transects radiating from the hurricane center. A fetch model is formulated for any location inside the hurricane. Applying the fetch model to the 2D hurricane wind field, the detailed spatial distribution of the wave field and the associated energy and momentum exchanges inside the hurricane are investigated. For the case studied, the energy and momentum exchanges display two local maxima resulting from different weightings of wave age and wind speed. Referenced to the hurricane heading, the exchanges on the right half plane of the hurricane are much stronger than those on the left half plane. Integrated over the hurricane coverage area, the right-to-left ratio is about 3:1 for both energy and momentum exchanges. Computed exchange rates with and without considering wave properties differ significantly.

U.S. Naval Research Laboratory Publication Number JA/7260—16-0044.

Corresponding author address: Dr. Paul A. Hwang, Remote Sensing Division, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375. E-mail: paul.hwang@nrl.navy.mil
Save