• Baldwin, M. P., P. B. Rhines, H.-P. Huang, and M. E. McIntyre, 2007: The jet-stream conundrum. Science, 315, 467468, doi:10.1126/science.1131375.

    • Search Google Scholar
    • Export Citation
  • Berloff, P., 2015: Dynamically consistent parameterization of mesoscale eddies. Part I: Simple model. Ocean Modell., 87, 119, doi:10.1016/j.ocemod.2014.12.008.

    • Search Google Scholar
    • Export Citation
  • Berloff, P., and I. Kamenkovich, 2013a: On spectral analysis of mesoscale eddies. Part I: Linear analysis. J. Phys. Oceanogr., 43, 25052527, doi:10.1175/JPO-D-12-0232.1.

    • Search Google Scholar
    • Export Citation
  • Berloff, P., and I. Kamenkovich, 2013b: On spectral analysis of mesoscale eddies. Part II: Nonlinear analysis. J. Phys. Oceanogr., 43, 25282544, doi:10.1175/JPO-D-12-0233.1.

    • Search Google Scholar
    • Export Citation
  • Berloff, P., I. Kamenkovich, and J. Pedlosky, 2009: A mechanism of formation of multiple zonal jets in the oceans. J. Fluid Mech., 628, 395425, doi:10.1017/S0022112009006375.

    • Search Google Scholar
    • Export Citation
  • Berloff, P., S. Karabasov, J. T. Farrar, and I. Kamenkovich, 2011: On latency of multiple zonal jets in the oceans. J. Fluid Mech., 686, 534567, doi:10.1017/jfm.2011.345.

    • Search Google Scholar
    • Export Citation
  • Beron-Vera, F. J., Y. Wang, and M. J. Olascoaga, 2013: Objective detection of oceanic eddies and the Agulhas leakage. J. Phys. Oceanogr., 43, 14261438, doi:10.1175/JPO-D-12-0171.1.

    • Search Google Scholar
    • Export Citation
  • Bischoff, T., and A. F. Thompson, 2014: Configuration of a Southern Ocean storm track. J. Phys. Oceanogr., 44, 30723078, doi:10.1175/JPO-D-14-0062.1.

    • Search Google Scholar
    • Export Citation
  • Boland, E. J. D., A. F. Thompson, E. Shuckburgh, and P. H. Haynes, 2012: The formation of nonzonal jets over sloped topography. J. Phys. Oceanogr., 42, 16351651, doi:10.1175/JPO-D-11-0152.1.

    • Search Google Scholar
    • Export Citation
  • Buckingham, C. E., and P. C. Cornillon, 2013: The contribution of eddies to striations in absolute dynamic topography. J. Geophys. Res. Oceans, 118, 448461, doi:10.1029/2012JC008231.

    • Search Google Scholar
    • Export Citation
  • Buckingham, C. E., P. C. Cornillon, F. Schloesser, and K. M. Obenour, 2014: Global observations of quasi-zonal bands in microwave sea surface temperature. J. Geophys. Res. Oceans, 119, 48404866, doi:10.1002/2014JC010088.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, doi:10.1016/j.pocean.2011.01.002.

    • Search Google Scholar
    • Export Citation
  • Chen, C., I. Kamenkovich, and P. Berloff, 2015: On the dynamics of flows induced by topographic ridges. J. Phys. Oceanogr., 45, 927940, doi:10.1175/JPO-D-14-0143.1.

    • Search Google Scholar
    • Export Citation
  • Chen, R., and G. R. Flierl, 2015: The contribution of striations to the eddy energy budget and mixing: Diagnostic frameworks and results in a quasigeostrophic barotropic system with mean flow. J. Phys. Oceanogr., 45, 20952113, doi:10.1175/JPO-D-14-0199.1.

    • Search Google Scholar
    • Export Citation
  • Chen, R., G. R. Flierl, and C. Wunsch, 2015: Quantifying and interpreting striations in a subtropical gyre: A spectral perspective. J. Phys. Oceanogr., 45, 387406, doi:10.1175/JPO-D-14-0038.1.

    • Search Google Scholar
    • Export Citation
  • Faghmous, J. H., I. Frenger, Y. Yao, R. Warmka, A. Lindell, and V. Kumar, 2015: A daily global mesoscale ocean eddy dataset from satellite altimetry. Sci. Data, 2, 150028, doi:10.1038/sdata.2015.28.

    • Search Google Scholar
    • Export Citation
  • Farrar, J. T., 2011: Barotropic Rossby waves radiating from tropical instability waves in the Pacific Ocean. J. Phys. Oceanogr., 41, 11601181, doi:10.1175/2011JPO4547.1.

    • Search Google Scholar
    • Export Citation
  • Huang, H.-P., A. Kaplan, E. N. Curchitser, and N. A. Maximenko, 2007: The degree of anisotropy for mid-ocean currents from satellite observations and an eddy-permitting model simulation. J. Geophys. Res., 112, C09005, doi:10.1029/2007JC004105.

    • Search Google Scholar
    • Export Citation
  • Kamenkovich, I., P. Berloff, and J. Pedlosky, 2009a: Anisotropic material transport by eddies and eddy-driven currents in a model of the North Atlantic. J. Phys. Oceanogr., 39, 31623175, doi:10.1175/2009JPO4239.1.

    • Search Google Scholar
    • Export Citation
  • Kamenkovich, I., P. Berloff, and J. Pedlosky, 2009b: Role of eddy forcing in the dynamics of multiple zonal jets in a model of the North Atlantic. J. Phys. Oceanogr., 39, 13611379, doi:10.1175/2008JPO4096.1.

    • Search Google Scholar
    • Export Citation
  • Kamenkovich, I., I. Rypina, and P. Berloff, 2015: Properties and origins of the anisotropic eddy-induced transport in the North Atlantic. J. Phys. Oceanogr., 45, 778791, doi:10.1175/JPO-D-14-0164.1.

    • Search Google Scholar
    • Export Citation
  • Karabasov, S. A., and V. M. Goloviznin, 2009: Compact accurately boundary-adjusting high-resolution technique for fluid dynamics. J. Comput. Phys., 228, 74267451, doi:10.1016/j.jcp.2009.06.037.

    • Search Google Scholar
    • Export Citation
  • Karabasov, S. A., P. S. Berloff, and V. M. Goloviznin, 2009: CABARET in the ocean gyres. J. Ocean Modell., 30, 155168, doi:10.1016/j.ocemod.2009.06.009.

    • Search Google Scholar
    • Export Citation
  • Kondrashov, D., and P. S. Berloff, 2015: Stochastic modeling of decadal variability in ocean gyres. Geophys. Res. Lett., 42, 15431553, doi:10.1002/2014GL062871.

    • Search Google Scholar
    • Export Citation
  • Kondratyev, K., and G. Hunt, 1982: Weather and Climate on Planets. Elsevier, 768 pp.

  • LaCasce, J. H., and J. Pedlosky, 2004: The instability of Rossby basin modes and the oceanic eddy field. J. Phys. Oceanogr., 34, 20272041, doi:10.1175/1520-0485(2004)034<2027:TIORBM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maximenko, N. A., B. Bang, and H. Sasaki, 2005: Observational evidence of alternating zonal jets in the World Ocean. Geophys. Res. Lett., 32, L12607, doi:10.1029/2005GL022728.

    • Search Google Scholar
    • Export Citation
  • Maximenko, N. A., O. V. Melnichenko, P. P. Niiler, and H. Sasaki, 2008: Stationary mesoscale jet-like features in the ocean. Geophys. Res. Lett., 35, L08603, doi:10.1029/2008GL033267.

    • Search Google Scholar
    • Export Citation
  • Maximenko, N. A., P. Niiler, L. Centurioni, M.-H. Rio, O. Melnichenko, D. Chambers, V. Zlotnicki, and B. Galperin, 2009: Mean dynamic topography of the ocean derived from satellite and drifting buoy data using three different techniques. J. Atmos. Oceanic Technol., 26, 19101919, doi:10.1175/2009JTECHO672.1.

    • Search Google Scholar
    • Export Citation
  • Nadiga, B. T., 2006: On zonal jets in oceans. Geophys. Res. Lett., 33, L10601, doi:10.1029/2006GL025865.

  • Okubo, A., 1970: Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep-Sea Res. Oceanogr. Abstr., 17, 445454, doi:10.1016/0011-7471(70)90059-8.

    • Search Google Scholar
    • Export Citation
  • O’Reilly, C. H., A. Czaja, and J. H. LaCasce, 2012: The emergence of zonal ocean jets under large-scale stochastic wind forcing. Geophys. Res. Lett., 39, L11606, doi:10.1029/2012GL051684.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer-Verlag, 710 pp.

  • Richards, K. J., N. A. Maximenko, F. O. Bryan, and H. Sasaki, 2006: Zonal jets in the Pacific Ocean. Geophys. Res. Lett., 33, L03605, doi:10.1029/2005GL024645.

    • Search Google Scholar
    • Export Citation
  • Schlax, M. G., and D. B. Chelton, 2008: The influence of mesoscale eddies on the detection of quasi-zonal jets in the ocean. Geophys. Res. Lett., 35, L24602, doi:10.1029/2008GL035998.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., 1990: Topological Fluid Mechanics. Cambridge University Press, 278–287.

  • Shevchenko, I. V., and P. S. Berloff, 2015: Multi-layer quasi-geostrophic ocean dynamics in Eddy-resolving regimes. Ocean Modell., 94, 114, doi:10.1016/j.ocemod.2015.07.018.

    • Search Google Scholar
    • Export Citation
  • Tanaka, Y., and K. Akitomo, 2010: Alternating zonal flows in a two-layer wind-driven ocean. J. Oceanogr., 66, 475487, doi:10.1007/s10872-010-0040-x.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., M. J. Olascoaga, and F. J. Beron-Vera, 2015: Coherent water transport across the South Atlantic. Geophys. Res. Lett., 42, 40724079, doi:10.1002/2015GL064089.

    • Search Google Scholar
    • Export Citation
  • Weiss, J., 1991: The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D, 48, 273294, doi:10.1016/0167-2789(91)90088-Q.

    • Search Google Scholar
    • Export Citation
  • Wu, Q., 2014: Region-shrinking: A hybrid segmentation technique for isolating continuous features, the case of oceanic eddy detection. Remote Sens. Environ., 153, 9098, doi:10.1016/j.rse.2014.07.026.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 253 124 13
PDF Downloads 117 60 3

Eddy Trains and Striations in Quasigeostrophic Simulations and the Ocean

View More View Less
  • 1 Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
  • | 2 Department of Mathematics, Imperial College London, London, United Kingdom
Restricted access

Abstract

This study explores the relationship between coherent eddies and zonally elongated striations. The investigation involves an analysis of two baroclinic quasigeostrophic models of a zonal and double-gyre flow and a set of altimetry sea level anomaly data in the North Pacific. Striations are defined by either spatiotemporal filtering or empirical orthogonal functions (EOFs), with both approaches leading to consistent results. Coherent eddies, identified here by the modified Okubo–Weiss parameter, tend to propagate along well-defined paths, thus forming “eddy trains” that coincide with striations. The striations and eddy trains tend to drift away from the intergyre boundary at the same speed in both the model and observations. The EOF analysis further confirms that these striations in model simulations and altimetry are not an artifact of temporal averaging of random, spatially uncorrelated vortices. This study suggests instead that eddies organize into eddy trains, which manifest themselves as striations in low-pass filtered data and EOF modes.

Corresponding author address: Changheng Chen, Department of Systems Design Engineering, University of Waterloo, 200 University Avenue West, Waterloo ON N2L 3G1, Canada. E-mail: cchen@rsmas.miami.edu

Current affiliation: Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada.

Abstract

This study explores the relationship between coherent eddies and zonally elongated striations. The investigation involves an analysis of two baroclinic quasigeostrophic models of a zonal and double-gyre flow and a set of altimetry sea level anomaly data in the North Pacific. Striations are defined by either spatiotemporal filtering or empirical orthogonal functions (EOFs), with both approaches leading to consistent results. Coherent eddies, identified here by the modified Okubo–Weiss parameter, tend to propagate along well-defined paths, thus forming “eddy trains” that coincide with striations. The striations and eddy trains tend to drift away from the intergyre boundary at the same speed in both the model and observations. The EOF analysis further confirms that these striations in model simulations and altimetry are not an artifact of temporal averaging of random, spatially uncorrelated vortices. This study suggests instead that eddies organize into eddy trains, which manifest themselves as striations in low-pass filtered data and EOF modes.

Corresponding author address: Changheng Chen, Department of Systems Design Engineering, University of Waterloo, 200 University Avenue West, Waterloo ON N2L 3G1, Canada. E-mail: cchen@rsmas.miami.edu

Current affiliation: Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada.

Save