• Abernathey, R., and P. Cessi, 2014: Topographic enhancement of eddy efficiency in baroclinic equilibration. J. Phys. Oceanogr., 44, 21072126, doi:10.1175/JPO-D-14-0014.1.

    • Search Google Scholar
    • Export Citation
  • Ahuja, R. K., A. V. Goldberg, J. B. Orlin, and R. E. Tarjan, 1992: Finding minimum-cost flows by double scaling. Math. Program., 53, 243266, doi:10.1007/BF01585705.

    • Search Google Scholar
    • Export Citation
  • Antonov, J., and Coauthors, 2010: Salinity. Vol. 2, World Ocean Atlas 2009, NOAA Atlas NESDIS 69, 184 pp.

  • Arbic, B. K., 2000: Generation of mid-ocean eddies: The local baroclinic instability hypothesis. Ph.D. thesis, Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 290 pp.

  • Bland, R. G., and D. L. Jensen, 1992: On the computational behavior of a polynomial-time network flow algorithm. Math. Program., 54, 139, doi:10.1007/BF01586039.

    • Search Google Scholar
    • Export Citation
  • Bryan, K., and M. D. Cox, 1968: A nonlinear model of an ocean driven by wind and differential heating: Part I. Description of the three-dimensional velocity and density fields. J. Atmos. Sci., 25, 945967, doi:10.1175/1520-0469(1968)025<0945:ANMOAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chapman, C. C., A. M. Hogg, A. E. Kiss, and S. R. Rintoul, 2015: The dynamics of Southern Ocean storm tracks. J. Phys. Oceanogr., 45, 884903, doi:10.1175/JPO-D-14-0075.1.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, doi:10.1016/j.pocean.2011.01.002.

    • Search Google Scholar
    • Export Citation
  • Chen, R., G. R. Flierl, and C. Wunsch, 2014: A description of local and nonlocal eddy–mean flow interaction in a global eddy-permitting state estimate. J. Phys. Oceanogr., 44, 23362352, doi:10.1175/JPO-D-14-0009.1.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and C. Wunsch, 2009: Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annu. Rev. Fluid Mech., 41, 253282, doi:10.1146/annurev.fluid.40.111406.102139.

    • Search Google Scholar
    • Export Citation
  • Goldberg, A. V., 1997: An efficient implementation of a scaling minimum-cost flow algorithm. J. Algorithms, 22, 129, doi:10.1006/jagm.1995.0805.

    • Search Google Scholar
    • Export Citation
  • Goldberg, A. V., and R. E. Tarjan, 1989: Finding minimum-cost circulations by canceling negative cycles. J. Assoc. Comput. Mach., 36, 873886, doi:10.1145/76359.76368.

    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2015: Gulf Stream dynamics along the southeastern U.S. seaboard. J. Phys. Oceanogr., 45, 690715, doi:10.1175/JPO-D-14-0154.1.

    • Search Google Scholar
    • Export Citation
  • Hieronymus, M., and J. Nycander, 2015: Finding the minimum potential energy state by adiabatic parcel rearrangements with a nonlinear equation of state: An exact solution in polynomial time. J. Phys. Oceanogr., 45, 18431857, doi:10.1175/JPO-D-14-0174.1.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., 2005: Available potential energy in the world’s oceans. J. Mar. Res., 63, 141158, doi:10.1357/0022240053693770.

  • Jochum, M., P. Malanotte-Rizzoli, and A. Busalacchi, 2004: Tropical instability waves in the Atlantic Ocean. Ocean Modell., 7, 145163, doi:10.1016/S1463-5003(03)00042-8.

    • Search Google Scholar
    • Export Citation
  • Jonker, R., and A. Volgenant, 1987: A shortest augmenting path algorithm for dense and sparse linear assignment problems. Computing, 38, 325340, doi:10.1007/BF02278710.

    • Search Google Scholar
    • Export Citation
  • Kuhn, H. W., 1955: The Hungarian method for the assignment problem. Nav. Res. Logist., 2, 8397, doi:10.1002/nav.3800020109.

  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157167, doi:10.1111/j.2153-3490.1955.tb01148.x.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and K. Speer, 2012: Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci., 5, 171180, doi:10.1038/ngeo1391.

    • Search Google Scholar
    • Export Citation
  • Menemenlis, D., J.-M. Campin, P. Heimbach, C. Hill, T. Lee, A. Nguyen, M. Schodlok, and H. Zhang, 2008: ECCO2: High resolution global ocean and sea ice data synthesis. Mercator Ocean Quarterly Newsletter, No. 31, Mercator-Ocean, Ramonville-Saint-Agne, France, 13–21.

  • Molemaker, M. J., and J. C. McWilliams, 2010: Local balance and cross-scale flux of available potential energy. J. Fluid Mech., 645, 295314, doi:10.1017/S0022112009992643.

    • Search Google Scholar
    • Export Citation
  • Orsi, A., G. Johnson, and J. Bullister, 1999: Circulation, mixing, and production of Antarctic Bottom Water. Prog. Oceanogr., 43, 55109, doi:10.1016/S0079-6611(99)00004-X.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer-Verlag, 710 pp.

  • Reid, R., B. Elliott, and D. Olson, 1981: Available potential energy: A clarification. J. Phys. Oceanogr., 11, 1529, doi:10.1175/1520-0485(1981)011<0015:APEAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rintoul, S., C. Hughes, and D. Olbers, 2001: The Antarctic Circumpolar Current system. Ocean Circulation and Climate, G. Siedler, J. Church, and J. Gould, Eds., Academic Press, 271–302.

  • Roullet, G., and P. Klein, 2009: Available potential energy diagnosis in a direct numerical simulation of rotating stratified turbulence. J. Fluid Mech., 624, 4555, doi:10.1017/S0022112008004473.

    • Search Google Scholar
    • Export Citation
  • Roullet, G., J. C. McWilliams, X. Capet, and M. J. Molemaker, 2012: Properties of steady geostrophic turbulence with isopycnal outcropping. J. Phys. Oceanogr., 42, 1838, doi:10.1175/JPO-D-11-09.1.

    • Search Google Scholar
    • Export Citation
  • Roullet, G., X. Capet, and G. Maze, 2014: Global interior eddy available potential energy diagnosed from Argo floats. Geophys. Res. Lett., 41, 16511656, doi:10.1002/2013GL059004.

    • Search Google Scholar
    • Export Citation
  • Saenz, J. A., R. Tailleux, E. D. Butler, G. O. Hughes, and K. Oliver, 2015: Estimating Lorenz’s reference state in an ocean with a nonlinear equation of state. J. Phys. Oceanogr., 45, 12421257, doi:10.1175/JPO-D-14-0105.1.

    • Search Google Scholar
    • Export Citation
  • Sallée, J., K. Speer, R. Morrow, and R. Lumpkin, 2008: An estimate of Lagrangian eddy statistics and diffusion in the mixed layer of the Southern Ocean. J. Mar. Res., 66, 441463, doi:10.1357/002224008787157458.

    • Search Google Scholar
    • Export Citation
  • Scotti, A., and B. White, 2014: Diagnosing mixing in stratified turbulent flows with a locally defined available potential energy. J. Fluid Mech., 740, 114135, doi:10.1017/jfm.2013.643.

    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., and A. F. Thompson, 2013: Connecting Antarctic cross-slope exchange with Southern Ocean overturning. J. Phys. Oceanogr., 43, 14531471, doi:10.1175/JPO-D-12-0205.1.

    • Search Google Scholar
    • Export Citation
  • Su, Z., A. Stewart, and A. Thompson, 2014: An idealized model of Weddell Gyre export variability. J. Phys. Oceanogr., 44, 16711688, doi:10.1175/JPO-D-13-0263.1.

    • Search Google Scholar
    • Export Citation
  • Su, Z., A. P. Ingersoll, A. Stewart, and A. Thompson, 2016a: Ocean convective available potential energy. Part I: Concept and calculation. J. Phys. Oceanogr., 46, 10811096, doi:10.1175/JPO-D-14-0155.1.

    • Search Google Scholar
    • Export Citation
  • Su, Z., A. P. Ingersoll, A. Stewart, and A. Thompson, 2016b: Convective available potential energy. Part II: Energetics of thermobaric convection and thermobaric cabbeling. J. Phys. Oceanogr., 46, 10971115, doi:10.1175/JPO-D-14-0156.1.

    • Search Google Scholar
    • Export Citation
  • Su, Z., A. P. Ingersoll, and F. He, 2016c: On the abruptness of Bølling–Allerød warming. J. Climate, 29, 49654975, doi:10.1175/JCLI-D-15-0675.1.

    • Search Google Scholar
    • Export Citation
  • Tailleux, R., 2013a: Available potential energy and exergy in stratified fluids. Annu. Rev. Fluid Mech., 45, 3558, doi:10.1146/annurev-fluid-011212-140620.

    • Search Google Scholar
    • Export Citation
  • Tailleux, R., 2013b: Available potential energy density for a multicomponent Boussinesq fluid with arbitrary nonlinear equation of state. J. Fluid Mech., 735, 499518, doi:10.1017/jfm.2013.509.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., 2010: Jet formation and evolution in baroclinic turbulence with simple topography. J. Phys. Oceanogr., 40, 257278, doi:10.1175/2009JPO4218.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., and J.-B. Sallée, 2012: Jets and topography: Jet transitions and the impact on transport in the Antarctic Circumpolar Current. J. Phys. Oceanogr., 42, 956972, doi:10.1175/JPO-D-11-0135.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., and A. C. Naveira Garabato, 2014: Equilibration of the Antarctic Circumpolar Current by standing meanders. J. Phys. Oceanogr., 44, 18111828, doi:10.1175/JPO-D-13-0163.1.

    • Search Google Scholar
    • Export Citation
  • Tseng, Y., and J. H. Ferziger, 2001: Mixing and available potential energy in stratified flows. Phys. Fluids, 13, 12811293, doi:10.1063/1.1358307.

    • Search Google Scholar
    • Export Citation
  • Tulloch, R., J. Marshall, C. Hill, and K. S. Smith, 2011: Scales, growth rates, and spectral fluxes of baroclinic instability in the ocean. J. Phys. Oceanogr., 41, 10571076, doi:10.1175/2011JPO4404.1.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge University Press, 769 pp.

  • Visbeck, M., J. Marshall, T. Haine, and M. Spall, 1997: Specification of eddy transfer coefficients in coarse-resolution ocean circulation models. J. Phys. Oceanogr., 27, 381402, doi:10.1175/1520-0485(1997)027<0381:SOETCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Williams, R. G., C. Wilson, and C. W. Hughes, 2007: Ocean and atmosphere storm tracks: The role of eddy vorticity forcing. J. Phys. Oceanogr., 37, 22672289, doi:10.1175/JPO3120.1.

    • Search Google Scholar
    • Export Citation
  • Winters, K. B., and R. Barkan, 2013: Available potential energy density for Boussinesq fluid flow. J. Fluid Mech., 714, 476488, doi:10.1017/jfm.2012.493.

    • Search Google Scholar
    • Export Citation
  • Zhai, X., and D. P. Marshall, 2013: Vertical eddy energy fluxes in the North Atlantic subtropical and subpolar gyres. J. Phys. Oceanogr., 43, 95103, doi:10.1175/JPO-D-12-021.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 234 104 10
PDF Downloads 147 58 4

On the Minimum Potential Energy State and the Eddy Size–Constrained APE Density

View More View Less
  • 1 Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California
Restricted access

Abstract

Exactly solving the absolute minimum potential energy state (Lorenz reference state) is a difficult problem because of the nonlinear nature of the equation of state of seawater. This problem has been solved recently but the algorithm comes at a high computational cost. As the first part of this study, the authors develop an algorithm that is ~103–105 times faster, making it useful for energy diagnosis in ocean models. The second part of this study shows that the global patterns of Lorenz available potential energy (APE) density are distinct from those of eddy kinetic energy (EKE). This is because the Lorenz APE density is based on the entire domainwide parcel rearrangement, while mesoscale eddies, if related to baroclinic instability, are typically generated through local parcel rearrangement approximately around the eddy size. Inspired by this contrast, this study develops a locally defined APE framework: the eddy size–constrained APE density based on the strong constraint that the parcel rearrangement/displacement to achieve the minimum potential energy state should not exceed the local eddy size horizontally. This concept typically identifies baroclinically unstable regions. It is shown to be helpful to detect individual eddies/vortices and local EKE patterns, for example, around the Southern Ocean fronts and subtropical western boundary currents. This is consistent with the physical picture that mesoscale eddies are associated with a strong signature in both the velocity field (i.e., EKE) and the stratification (i.e., local APE). The new APE concept may be useful in parameterizing mesoscale eddies in ocean models.

Corresponding author address: Zhan Su, Division of Geological and Planetary Sciences, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125. E-mail: zhan@gps.caltech.edu

Abstract

Exactly solving the absolute minimum potential energy state (Lorenz reference state) is a difficult problem because of the nonlinear nature of the equation of state of seawater. This problem has been solved recently but the algorithm comes at a high computational cost. As the first part of this study, the authors develop an algorithm that is ~103–105 times faster, making it useful for energy diagnosis in ocean models. The second part of this study shows that the global patterns of Lorenz available potential energy (APE) density are distinct from those of eddy kinetic energy (EKE). This is because the Lorenz APE density is based on the entire domainwide parcel rearrangement, while mesoscale eddies, if related to baroclinic instability, are typically generated through local parcel rearrangement approximately around the eddy size. Inspired by this contrast, this study develops a locally defined APE framework: the eddy size–constrained APE density based on the strong constraint that the parcel rearrangement/displacement to achieve the minimum potential energy state should not exceed the local eddy size horizontally. This concept typically identifies baroclinically unstable regions. It is shown to be helpful to detect individual eddies/vortices and local EKE patterns, for example, around the Southern Ocean fronts and subtropical western boundary currents. This is consistent with the physical picture that mesoscale eddies are associated with a strong signature in both the velocity field (i.e., EKE) and the stratification (i.e., local APE). The new APE concept may be useful in parameterizing mesoscale eddies in ocean models.

Corresponding author address: Zhan Su, Division of Geological and Planetary Sciences, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125. E-mail: zhan@gps.caltech.edu
Save