• Austin, J. A., and J. A. Barth, 2002: Variation in the position of the upwelling front on the Oregon shelf. J. Geophys. Res., 107, 3180, doi:10.1029/2001JC000858.

    • Search Google Scholar
    • Export Citation
  • Barron, C. N., A. B. Kara, P. J. Martin, R. C. Rhodes, and L. F. Smedstad, 2006: Formulation, implementation and examination of vertical coordinate choices in the global Navy Coastal Ocean Model (NCOM). Ocean Modell., 11, 347375, doi:10.1016/j.ocemod.2005.01.004.

    • Search Google Scholar
    • Export Citation
  • Barron, C. N., L. F. Smedstad, J. M. Dastugue, and O. M. Smedstad, 2007: Evaluation of ocean models using observed and simulated drifter trajectories: Impact of sea surface height on synthetic profiles for data assimilation. J. Geophys. Res., 112, C07019, doi:10.1029/2006JC003982.

    • Search Google Scholar
    • Export Citation
  • Biton, E., and H. Gildor, 2014: Energy budget of a small convectively driven marginal sea: The Gulf of Eilat/Aqaba (northern Red Sea). J. Phys. Oceanogr., 44, 19541972, doi:10.1175/JPO-D-13-0220.1.

    • Search Google Scholar
    • Export Citation
  • Carter, G. S., and Coauthors, 2008: Energetics of M2 barotropic-to-baroclinic tidal conversion at the Hawaiian Islands. J. Phys. Oceanogr., 38, 22052223, doi:10.1175/2008JPO3860.1.

    • Search Google Scholar
    • Export Citation
  • Cessi, P., N. Pinardi, and V. Lyubartsev, 2014: Energetics of semienclosed basins with two-layer flows at the strait. J. Phys. Oceanogr., 44, 967979, doi:10.1175/JPO-D-13-0129.1.

    • Search Google Scholar
    • Export Citation
  • Cushman-Roisin, B., and J.-M. Beckers, 2011: Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects. 2nd ed. Academic Press, 875 pp.

  • Egbert, G. D., and S. Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183204, doi:10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emery, W. J., and R. E. Thomson, 1998: Data Analysis Methods in Physical Oceanography. Elsevier, 634 pp.

  • Ferrari, R., and C. Wunsch, 2009: Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annu. Rev. Fluid Mech., 41, 253282, doi:10.1146/annurev.fluid.40.111406.102139.

    • Search Google Scholar
    • Export Citation
  • Floor, J. W., F. Auclair, and P. Marsaleix, 2011: Energy transfers in internal tide generation, propagation and dissipation in the deep ocean. Ocean Modell., 38, 2240, doi:10.1016/j.ocemod.2011.01.009.

    • Search Google Scholar
    • Export Citation
  • Geyer, W. R., and P. MacCready, 2013: The estuarine circulation. Annu. Rev. Fluid Mech., 46, 175197, doi:10.1146/annurev-fluid-010313-141302.

    • Search Google Scholar
    • Export Citation
  • Giddings, S. N., and Coauthors, 2014: Hindcasts of potential harmful algal bloom transport pathways on the Pacific Northwest coast. J. Geophys. Res. Oceans, 119, 24392461, doi:10.1002/2013JC009622.

    • Search Google Scholar
    • Export Citation
  • Haidvogel, D. B., H. G. Arango, K. Hedstrom, A. Beckmann, P. Malanotte-Rizzoli, and A. F. Shchepetkin, 2000: Model evaluation experiments in the North Atlantic basin: Simulations in nonlinear terrain-following coordinates. Dyn. Atmos. Oceans, 32, 239281, doi:10.1016/S0377-0265(00)00049-X.

    • Search Google Scholar
    • Export Citation
  • Hickey, B., A. MacFadyen, W. Cochlan, R. Kudela, K. Bruland, and C. Trick, 2006: Evolution of chemical, biological, and physical water properties in the northern California Current in 2005: Remote or local wind forcing? Geophys. Res. Lett., 33, L22S02, doi:10.1029/2006GL026782.

    • Search Google Scholar
    • Export Citation
  • Holliday, D., and M. E. McIntyre, 1981: On potential energy density in an incompressible, stratified fluid. J. Fluid Mech., 107, 221225, doi:10.1017/S0022112081001742.

    • Search Google Scholar
    • Export Citation
  • Kang, D., and O. Fringer, 2010: On the calculation of available potential energy in internal wave fields. J. Phys. Oceanogr., 40, 25392545, doi:10.1175/2010JPO4497.1.

    • Search Google Scholar
    • Export Citation
  • Kang, D., and O. Fringer, 2012: Energetics of barotropic and baroclinic tides in the Monterey Bay area. J. Phys. Oceanogr., 42, 272290, doi:10.1175/JPO-D-11-039.1.

    • Search Google Scholar
    • Export Citation
  • Kang, D., and E. N. Curchitser, 2015: Energetics of eddy–mean flow interactions in the Gulf Stream region. J. Phys. Oceanogr., 45, 11031120, doi:10.1175/JPO-D-14-0200.1.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157167, doi:10.1111/j.2153-3490.1955.tb01148.x.

    • Search Google Scholar
    • Export Citation
  • MacCready, P., 2011: Calculating estuarine exchange flow using isohaline coordinates. J. Phys. Oceanogr., 41, 11161124, doi:10.1175/2011JPO4517.1.

    • Search Google Scholar
    • Export Citation
  • MacCready, P., N. S. Banas, B. M. Hickey, E. P. Dever, and Y. Liu, 2009: A model study of tide- and wind-induced mixing in the Columbia River estuary and plume. Cont. Shelf Res., 29, 278291, doi:10.1016/j.csr.2008.03.015.

    • Search Google Scholar
    • Export Citation
  • Marsaleix, P., F. Auclair, J. W. Floor, M. J. Herrmann, C. Estournel, I. Pairaud, and C. Ulses, 2008: Energy conservation issues in sigma-coordinate free-surface ocean models. Ocean Modell., 20, 6189, doi:10.1016/j.ocemod.2007.07.005.

    • Search Google Scholar
    • Export Citation
  • Mass, C. F., and Coauthors, 2003: Regional environmental prediction over the Pacific Northwest. Bull. Amer. Meteor. Soc., 84, 13531366, doi:10.1175/BAMS-84-10-1353.

    • Search Google Scholar
    • Export Citation
  • Pierce, S. D., J. A. Barth, R. E. Thomas, and G. W. Fleischer, 2006: Anomalously warm July 2005 in the northern California Current: Historical context and the significance of cumulative wind stress. Geophys. Res. Lett., 33, 27, doi:10.1029/2006GL027149.

    • Search Google Scholar
    • Export Citation
  • Saenz, J. A., R. Tailleux, E. D. Butler, G. O. Hughes, and K. I. C. Oliver, 2015: Estimating Lorenz’s reference state in an ocean with a nonlinear equation of state for seawater. J. Phys. Oceanogr., 45, 12421257, doi:10.1175/JPO-D-14-0105.1.

    • Search Google Scholar
    • Export Citation
  • Scotti, A., and B. White, 2014: Diagnosing mixing in stratified turbulent flows with a locally defined available potential energy. J. Fluid Mech., 740, 114135, doi:10.1017/jfm.2013.643.

    • Search Google Scholar
    • Export Citation
  • Scotti, A., R. Beardsley, and B. Butman, 2006: On the interpretation of energy and energy fluxes of nonlinear internal waves: An example from Massachusetts Bay. J. Fluid Mech., 561, 103112, doi:10.1017/S0022112006000991.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, doi:10.1016/j.ocemod.2004.08.002.

    • Search Google Scholar
    • Export Citation
  • Sutherland, D. A., P. MacCready, N. S. Banas, and L. F. Smedstad, 2011: A model study of the Salish Sea estuarine circulation. J. Phys. Oceanogr., 41, 11251143, doi:10.1175/2011JPO4540.1.

    • Search Google Scholar
    • Export Citation
  • Tailleux, R., 2013: Available potential energy and exergy in stratified fluids. Annu. Rev. Fluid Mech., 45, 3558, doi:10.1146/annurev-fluid-011212-140620.

    • Search Google Scholar
    • Export Citation
  • Thomson, R. E., S. F. Mihály, and E. A. Kulikov, 2007: Estuarine versus transient flow regimes in Juan de Fuca Strait. J. Geophys. Res.., 112, C09022, doi:10.1029/2006JC003925.

    • Search Google Scholar
    • Export Citation
  • Waterhouse, A. F., and Coauthors, 2014: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr., 44, 18541872, doi:10.1175/JPO-D-13-0104.1.

    • Search Google Scholar
    • Export Citation
  • Winters, K. B., and R. Barkan, 2013: Available potential energy density for Boussinesq fluid flow. J. Fluid Mech., 714, 476488, doi:10.1017/jfm.2012.493.

    • Search Google Scholar
    • Export Citation
  • Winters, K. B., P. N. Lombard, J. J. Riley, and E. A. D’Asaro, 1995: Available potential energy and mixing in density-stratified fluids. J. Fluid Mech., 289, 115128, doi:10.1017/S002211209500125X.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314, doi:10.1146/annurev.fluid.36.050802.122121.

    • Search Google Scholar
    • Export Citation
  • Young, W. R., 2010: Dynamic enthalpy, conservative temperature, and the seawater Boussinesq approximation. J. Phys. Oceanogr., 40, 394400, doi:10.1175/2009JPO4294.1.

    • Search Google Scholar
    • Export Citation
  • Zemskova, V. E., B. L. White, and A. Scotti, 2015: Available potential energy and the general circulation: Partitioning wind, buoyancy forcing, and diapycnal mixing. J. Phys. Oceanogr., 45, 15101531, doi:10.1175/JPO-D-14-0043.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 463 167 12
PDF Downloads 435 145 10

The Mechanical Energy Budget of a Regional Ocean Model

View More View Less
  • 1 University of Washington, Seattle, Washington
  • | 2 University of California, San Diego, La Jolla, California
Restricted access

Abstract

A method is presented for calculating a complete, numerically closed, mechanical energy budget in a realistic simulation of circulation in a coastal–estuarine domain. The budget is formulated in terms of the “local” available potential energy (APE; ). The APE may be split up into two parts based on whether a water parcel has been displaced up or down relative to its rest depth. This decomposition clearly shows the different APE signatures of coastal upwelling (particles displaced up by wind) and the estuary (particles displaced down by mixing). Because the definition of APE is local in almost the same sense that kinetic energy is, this study may form meaningful integrals of reservoir and budget terms even over regions that have open boundaries. However, the choice of volume to use for calculation of the rest state is not unique and may influence the results. Complete volume-integrated energy budgets over shelf and estuary volumes in a realistic model of the northeast Pacific and Salish Sea give a new way to quantify the state of these systems and the physical forces that influence that state. On the continental shelf, upwelling may be quantified using APE, which is found to have order-one seasonal variation with an increase due to winds and decrease due to mixing. In the Salish Sea estuarine system, the APE has much less seasonal variation, and the magnitude of the most important forcing terms would take over 7 months to fully drain this energy.

Denotes Open Access content.

Corresponding author address: Parker MacCready, University of Washington, P.O. Box 355351, Seattle, WA 98195-5351. E-mail: pmacc@uw.edu

Abstract

A method is presented for calculating a complete, numerically closed, mechanical energy budget in a realistic simulation of circulation in a coastal–estuarine domain. The budget is formulated in terms of the “local” available potential energy (APE; ). The APE may be split up into two parts based on whether a water parcel has been displaced up or down relative to its rest depth. This decomposition clearly shows the different APE signatures of coastal upwelling (particles displaced up by wind) and the estuary (particles displaced down by mixing). Because the definition of APE is local in almost the same sense that kinetic energy is, this study may form meaningful integrals of reservoir and budget terms even over regions that have open boundaries. However, the choice of volume to use for calculation of the rest state is not unique and may influence the results. Complete volume-integrated energy budgets over shelf and estuary volumes in a realistic model of the northeast Pacific and Salish Sea give a new way to quantify the state of these systems and the physical forces that influence that state. On the continental shelf, upwelling may be quantified using APE, which is found to have order-one seasonal variation with an increase due to winds and decrease due to mixing. In the Salish Sea estuarine system, the APE has much less seasonal variation, and the magnitude of the most important forcing terms would take over 7 months to fully drain this energy.

Denotes Open Access content.

Corresponding author address: Parker MacCready, University of Washington, P.O. Box 355351, Seattle, WA 98195-5351. E-mail: pmacc@uw.edu
Save