Dynamics and Energetics of Trapped Diurnal Internal Kelvin Waves around a Midlatitude Island

Eiji Masunaga Center for Water Environmental Studies, Ibaraki University, Mito, Japan

Search for other papers by Eiji Masunaga in
Current site
Google Scholar
PubMed
Close
,
Oliver B. Fringer The Bob and Norma Street Environmental Fluid Mechanics Laboratory, Department of Civil and Environmental Engineering, Stanford University, Stanford, California

Search for other papers by Oliver B. Fringer in
Current site
Google Scholar
PubMed
Close
,
Yujiro Kitade Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo, Japan

Search for other papers by Yujiro Kitade in
Current site
Google Scholar
PubMed
Close
,
Hidekatsu Yamazaki Department of Ocean Sciences, Tokyo University of Marine Science and Technology, and CREST, Japan Science and Technology Agency, Tokyo, Japan

Search for other papers by Hidekatsu Yamazaki in
Current site
Google Scholar
PubMed
Close
, and
Scott M. Gallager Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Scott M. Gallager in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The generation of trapped and radiating internal tides around Izu‐Oshima Island located off Sagami Bay, Japan, is investigated using the three-dimensional Stanford Unstructured Nonhydrostatic Terrain-following Adaptive Navier–Stokes Simulator (SUNTANS) that is validated with observations of isotherm displacements in shallow water. The model is forced by barotropic tides, which generate strong baroclinic internal tides in the study region. Model results showed that when diurnal K1 barotropic tides dominate, resonance of a trapped internal Kelvin wave leads to large-amplitude internal tides in shallow waters on the coast. This resonance produces diurnal motions that are much stronger than the semidiurnal motions. The weaker, freely propagating, semidiurnal internal tides are generated on the western side of the island, where the M2 internal tide beam angle matches the topographic slope. The internal wave energy flux due to the diurnal internal tides is much higher than that of the semidiurnal tides in the study region. Although the diurnal internal tide energy is trapped, this study shows that steepening of the Kelvin waves produces high-frequency internal tides that radiate from the island, thus acting as a mechanism to extract energy from the diurnal motions.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hidekatsu Yamazaki, hide@kaiyodai.ac.jp

Abstract

The generation of trapped and radiating internal tides around Izu‐Oshima Island located off Sagami Bay, Japan, is investigated using the three-dimensional Stanford Unstructured Nonhydrostatic Terrain-following Adaptive Navier–Stokes Simulator (SUNTANS) that is validated with observations of isotherm displacements in shallow water. The model is forced by barotropic tides, which generate strong baroclinic internal tides in the study region. Model results showed that when diurnal K1 barotropic tides dominate, resonance of a trapped internal Kelvin wave leads to large-amplitude internal tides in shallow waters on the coast. This resonance produces diurnal motions that are much stronger than the semidiurnal motions. The weaker, freely propagating, semidiurnal internal tides are generated on the western side of the island, where the M2 internal tide beam angle matches the topographic slope. The internal wave energy flux due to the diurnal internal tides is much higher than that of the semidiurnal tides in the study region. Although the diurnal internal tide energy is trapped, this study shows that steepening of the Kelvin waves produces high-frequency internal tides that radiate from the island, thus acting as a mechanism to extract energy from the diurnal motions.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hidekatsu Yamazaki, hide@kaiyodai.ac.jp
Save
  • Allen, J., P. Somerfield, and F. Gilbert, 2007: Quantifying uncertainty in high‐resolution coupled hydrodynamic‐ecosystem models. J. Mar. Syst., 64, 314, doi:10.1016/j.jmarsys.2006.02.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Auger, G., H. Yamazaki, T. Nagai, C. Jiao, and M. Kumagai, 2013: Hypolimnetic turbulence generation associated with superposition of large-scale internal waves in a strongly stratified lake: Lake Biwa, Japan. Limnology, 14, 229238, doi:10.1007/s10201-013-0401-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, T. H., 1975: Lee waves in stratified flows with simple harmonic time dependence. J. Fluid Mech., 67, 705722, doi:10.1017/S0022112075000560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brink, K. H., 1999: Island-trapped waves, with application to observations off Bermuda. Dyn. Atmos. Oceans, 29, 93118, doi:10.1016/S0377-0265(99)00003-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buijsman, M. C., and Coauthors, 2016: Impact of parameterized internal wave drag on the semidiurnal energy balance in a global ocean circulation model. J. Phys. Oceanogr., 46, 13991419, doi:10.1175/JPO-D-15-0074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cacchione, D. A., L. F. Pratson, and A. S. Ogston, 2002: The shaping of continental slopes by internal tides. Science, 296, 724727, doi:10.1126/science.1069803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caldwell, D. R., and S. A. Eide, 1976: Experiments on the resonance of long-period waves near islands. Proc. Roy. Soc. London, A348, 359378, doi:10.1098/rspa.1976.0043.

    • Search Google Scholar
    • Export Citation
  • Carter, G. S., 2010: Barotropic and baroclinic M2 tides in the Monterey Bay region. J. Phys. Oceanogr., 40, 17661783, doi:10.1175/2010JPO4274.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carter, G. S., and M. C. Gregg, 2002: Intense, variable mixing near the head of Monterey Submarine Canyon. J. Phys. Oceanogr., 32, 31453165, doi:10.1175/1520-0485(2002)032<3145:IVMNTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dauxois, T., and W. R. Young, 1999: Near-critical reflection of internal waves. J. Fluid Mech., 390, 271295, doi:10.1017/S0022112099005108.

  • Egbert, G. D., and S. Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183204, doi:10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farmer, D., and L. Armi, 1999: Stratified flow over topography: The role of small-scale entrainment and mixing in flow establishment. Proc. Roy. Soc. London, A455, 32213258, doi:10.1098/rspa.1999.0448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fringer, O. B., M. Gerritsen, and R. L. Street, 2006: An unstructured-grid, finite-volume, nonhydrostatic, parallel coastal ocean simulator. Ocean Modell., 14, 139173, doi:10.1016/j.ocemod.2006.03.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., and E. Kunze, 2007: Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech., 39, 5787, doi:10.1146/annurev.fluid.39.050905.110227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., and A. J. Clarke, 1974: Wind-induced upwelling, coastal currents and sea-level changes. Deep-Sea Res. Oceanogr. Abstr., 21, 325345, doi:10.1016/0011-7471(74)90038-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gille, S. T., S. G. Llewellyn Smith, and S. M. Lee, 2003: Measuring the sea breeze from QuikSCAT scatterometry. Geophys. Res. Lett., 30, 1114, doi:10.1029/2002GL016230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halpern, D., 1971: Observations on short period internal waves in Massachusetts Bay. J. Mar. Res., 29, 116132.

  • Hibiya, T., 1986: Generation mechanism of internal waves by tidal flow over a sill. J. Geophys. Res., 91, 76977708, doi:10.1029/JC091iC06p07697.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, N. G., 1980: Observations of internal Kelvin waves trapped round Bermuda. J. Phys. Oceanogr., 10, 13531376, doi:10.1175/1520-0485(1980)010<1353:OOIKWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Igeta, Y., K. Yamazaki, and T. Watanabe, 2015: Amplification of coastal-trapped waves resonantly generated by wind around Sado Island, Japan. J. Oceanogr., 71, 4151, doi:10.1007/s10872-014-0259-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jordi, A., G. Basterretxea, and D.-P. Wang, 2009: Evidence of sediment resuspension by island trapped waves. Geophys. Res. Lett., 36, L18610, doi:10.1029/2009GL040055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, D., and O. Fringer, 2012: Energetics of barotropic and baroclinic tides in the Monterey Bay area. J. Phys. Oceanogr., 42, 272290, doi:10.1175/JPO-D-11-039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitade, Y., and M. Matsuyama, 1997: Characteristics of internal tides in the upper layer of Sagami Bay. J. Oceanogr., 53, 143159.

  • Kitade, Y., and M. Matsuyama, 2000: Coastal-trapped waves with several-day period caused by wind along the southeast coast of Honshu, Japan. J. Oceanogr., 56, 727744, doi:10.1023/A:1011186018956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kozlov, I., D. Romanenkov, A. Zimin, and B. Chapron, 2014: SAR observing large-scale nonlinear internal waves in the White Sea. Remote Sens. Environ., 147, 99107, doi:10.1016/j.rse.2014.02.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kundu, P. K., 1990: Fluid Mechanics. Academic Press, 638 pp.

  • Le Provost, C., M. L. Genco, F. Lyard, P. Vincent, and P. Canceil, 1994: Spectroscopy of the world ocean tides from a finite element hydrodynamic model. J. Geophys. Res., 99, 24 77724 797, doi:10.1029/94JC01381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., 1969: On the trapping of long-period waves round islands. J. Fluid Mech., 37, 773784, doi:10.1017/S0022112069000875.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., 1970: Steady currents induced by oscillations round islands. J. Fluid Mech., 42, 701720, doi:10.1017/S0022112070001568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masunaga, E., H. Homma, H. Yamazaki, O. B. Fringer, T. Nagai, Y. Kitade, and A. Okayasu, 2015: Mixing and sediment resuspension associated with internal bores in a shallow bay. Cont. Shelf Res., 110, 8599, doi:10.1016/j.csr.2015.09.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masunaga, E., R. S. Arthur, O. B. Fringer, and H. Yamazaki, 2017: Sediment resuspension and generation of intermediate nephew layers by shoaling internal bores. J. Mar. Syst., 170, 3141, doi:10.1016/j.jmarsys.2017.01.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhee-Shaw, E., 2006: Boundary–interior exchange: Reviewing the idea that internal-wave mixing enhances lateral dispersal near continental margins. Deep-Sea Res. II, 53, 4259, doi:10.1016/j.dsr2.2005.10.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mihanović, H., G. B. Paklar, and M. Orlić, 2014: Resonant excitation of island-trapped waves in a shallow, seasonally stratified sea. Cont. Shelf Res., 77, 2437, doi:10.1016/j.csr.2014.01.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Millero, F. J., and A. Poisson, 1981: International one-atmosphere equation of state of seawater. Deep-Sea Res., 28A, 625629, doi:10.1016/0198-0149(81)90122-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morozov, E. G., 1995: Semidiurnal internal wave global field. Deep-Sea Res. I, 42, 135148, doi:10.1016/0967-0637(95)92886-C.

  • Moum, J. N., D. M. Farmer, W. D. Smyth, L. Armi, and S. Vagle, 2003: Structure and generation of turbulence at interfaces strained by internal solitary waves propagating shoreward over the continental shelf. J. Phys. Oceanogr., 33, 20932112, doi:10.1175/1520-0485(2003)033<2093:SAGOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res., 45, 19772010, doi:10.1016/S0967-0637(98)00070-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1988: Skill scores based on the mean square error and their relationships to the correlation coefficient. Mon. Wea. Rev., 116, 24172424, doi:10.1175/1520-0493(1988)116<2417:SSBOTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakatsuka, T., M. Toda, K. Kawamura, and M. Wakatsuchi, 2004: Dissolved and particulate organic carbon in the Sea of Okhotsk: Transport from continental shelf to ocean interior. J. Geophys. Res., 109, C09S14, doi:10.1029/2003JC001909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niwa, Y., and T. Hibiya, 2004: Three-dimensional numerical simulation of M2 internal tides in the East China Sea. J. Geophys. Res., 109, C04027, doi:10.1029/2003JC001923.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohwaki, A., M. Matsuyama, and S. Iwata, 1991: Evidence for predominance of internal tidal currents in Sagami and Suruga Bays. J. Oceanogr. Soc. Japan, 47, 194206, doi:10.1007/BF02310035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pawlowicz, R., B. Beardsley, and S. Lentz, 2002: Classical tidal harmonic analysis with errors in MATLAB using T-TIDE. Comput. Geosci., 28, 929937, doi:10.1016/S0098-3004(02)00013-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pond, S., and G. L. Pickard, 1983: Introductory Dynamical Oceanography. 2nd ed. Pergamon Press, 329 pp.

    • Crossref
    • Export Citation
  • Rainville, L., and R. Pinkel, 2006: Baroclinic energy flux at the Hawaiian Ridge: Observations from the R/P FLIP. J. Phys. Oceanogr., 36, 11041122, doi:10.1175/JPO2882.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richards, C., D. Bourgault, P. S. Galbraith, A. Hay, and D. E. Kelley, 2013: Measurements of shoaling internal waves and turbulence in an estuary. J. Geophys. Res. Oceans, 118, 273286, doi:10.1029/2012JC008154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saggio, A., and J. Imberger, 1998: Internal wave weather in a stratified lake. Limnol. Oceanogr., 43, 17801795, doi:10.4319/lo.1998.43.8.1780.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharples, J., C. M. Moore, A. E. Hickman, P. M. Holligan, J. F. Tweddle, M. R. Palmer, and J. H. Simpson, 2009: Internal tidal mixing as a control on continental margin ecosystems. Geophys. Res. Lett., 36, L23603, doi:10.1029/2009GL040683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanaka, Y., T. Hibiya, Y. Niwa, and N. Iwamae, 2010: Numerical study of K1 internal tides in the Kuril straits. J. Geophys. Res., 115, C09016, doi:10.1029/2009JC005903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1987: Transitional phenomena and the development of turbulence in stratified fluids: A review. J. Geophys. Res., 92, 52315248, doi:10.1029/JC092iC05p05231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1998: Some dynamical effects of internal waves and the sloping sides of lakes. Physical Processes in Lakes and Oceans, Coastal and Estuarine Studies, Vol. 54, Amer. Geophys. Union, 441–460, doi:10.1029/CE054p0441.

    • Crossref
    • Export Citation
  • Vitousek, S., and O. B. Fringer, 2011: Physical vs. numerical dispersion in nonhydrostatic ocean modeling. Ocean Modell., 40, 7286, doi:10.1016/j.ocemod.2011.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, J. J., 1991: Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen. Nature, 350, 5355, doi:10.1038/350053a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1975: Internal tides in the ocean. Rev. Geophys., 13, 167182, doi:10.1029/RG013i001p00167.

  • Zhang, Z., O. B. Fringer, and S. R. Ramp, 2011: Three-dimensional, nonhydrostatic numerical simulation of nonlinear internal wave generation and propagation in the South China Sea. J. Geophys. Res., 116, C05022, doi:10.1029/2010JA016287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zilberman, N. V., J. M. Becker, M. A. Merrifield, and G. S. Carter, 2009: Model estimates of M2 internal tide generation over mid-Atlantic Ridge topography. J. Phys. Oceanogr., 39, 26352651, doi:10.1175/2008JPO4136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 434 124 10
PDF Downloads 387 90 4