Baroclinic Frontal Instabilities and Turbulent Mixing in the Surface Boundary Layer. Part II: Forced Simulations

Eric D. Skyllingstad College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Eric D. Skyllingstad in
Current site
Google Scholar
PubMed
Close
,
Jenessa Duncombe College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Jenessa Duncombe in
Current site
Google Scholar
PubMed
Close
, and
Roger M. Samelson College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Roger M. Samelson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Generation of ocean surface boundary layer turbulence and coherent roll structures is examined in the context of wind-driven and geostrophic shear associated with horizontal density gradients using a large-eddy simulation model. Numerical experiments over a range of surface wind forcing and horizontal density gradient strengths, combined with linear stability analysis, indicate that the dominant instability mechanism supporting coherent roll development in these simulations is a mixed instability combining shear instability of the ageostrophic, wind-driven flow with symmetric instability of the frontal geostrophic shear. Disruption of geostrophic balance by vertical mixing induces an inertially rotating ageostrophic current, not forced directly by the wind, that initially strengthens the stratification, damps the instabilities, and reduces vertical mixing, but instability and mixing return when the inertial buoyancy advection reverses. The resulting rolls and instabilities are not aligned with the frontal zone, with an oblique orientation controlled by the Ekman-like instability. Mean turbulence is enhanced when the winds are destabilizing relative to the frontal orientation, but mean Ekman buoyancy advection is found to be relatively unimportant in these simulations. Instead, the mean turbulent kinetic energy balance is dominated by mechanical shear production that is enhanced when the wind-driven shear augments the geostrophic shear, while the resulting vertical mixing nearly eliminates any effective surface buoyancy flux from near-surface, cold-to-warm, Ekman buoyancy advection.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Eric D. Skyllingstad, skylling@coas.oregonstate.edu

Abstract

Generation of ocean surface boundary layer turbulence and coherent roll structures is examined in the context of wind-driven and geostrophic shear associated with horizontal density gradients using a large-eddy simulation model. Numerical experiments over a range of surface wind forcing and horizontal density gradient strengths, combined with linear stability analysis, indicate that the dominant instability mechanism supporting coherent roll development in these simulations is a mixed instability combining shear instability of the ageostrophic, wind-driven flow with symmetric instability of the frontal geostrophic shear. Disruption of geostrophic balance by vertical mixing induces an inertially rotating ageostrophic current, not forced directly by the wind, that initially strengthens the stratification, damps the instabilities, and reduces vertical mixing, but instability and mixing return when the inertial buoyancy advection reverses. The resulting rolls and instabilities are not aligned with the frontal zone, with an oblique orientation controlled by the Ekman-like instability. Mean turbulence is enhanced when the winds are destabilizing relative to the frontal orientation, but mean Ekman buoyancy advection is found to be relatively unimportant in these simulations. Instead, the mean turbulent kinetic energy balance is dominated by mechanical shear production that is enhanced when the wind-driven shear augments the geostrophic shear, while the resulting vertical mixing nearly eliminates any effective surface buoyancy flux from near-surface, cold-to-warm, Ekman buoyancy advection.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Eric D. Skyllingstad, skylling@coas.oregonstate.edu
Save
  • Arobone, E., and S. Sarkar, 2015: Effects of three-dimensionality on instability and turbulence in a frontal zone. J. Fluid Mech., 784, 252273, doi:10.1017/jfm.2015.564.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bachman, S. D., B. Fox-Kemper, J. R. Taylor, and L. N. Thomas, 2017: Parameterization of frontal symmetric instabilities. I: Theory for resolved fronts. Ocean Modell., 109, 7295, doi:10.1016/j.ocemod.2016.12.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barcilon, V., 1964: Role of the Ekman layers in the stability of the symmetric regime obtained in a rotating annulus. J. Atmos. Sci., 21, 291299, doi:10.1175/1520-0469(1964)021<0291:ROTELI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barcilon, V., 1965: Stability of a non-divergent Ekman layer. Tellus, 17, 5368, https://doi.org/10.1111/j.2153-3490.1965.tb00194.x.

  • Belcher, S. E., and Coauthors, 2012: A global perspective on Langmuir turbulence in the ocean surface boundary layer. Geophys. Res. Lett., 39, L18605, doi:10.1029/2012GL052932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008: Mesoscale to submesoscale transition in the California Current System. Part I: Flow structure, eddy flux, and observational tests. J. Phys. Oceanogr., 38, 2943, doi:10.1175/2007JPO3671.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crawford, G. B., and W. G. Large, 1996: A numerical investigation of resonant inertial response of the ocean to wind forcing. J. Phys. Oceanogr., 26, 873891, doi:10.1175/1520-0485(1996)026<0873:ANIORI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E., C. Lee, L. Rainville, R. Harcourt, and L. Thomas, 2011: Enhanced turbulence and energy dissipation at ocean fronts. Science, 332, 318322, doi:10.1126/science.1201515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, doi:10.1007/BF00119502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ducros, F., P. Comte, and M. Lesieur, 1996: Large-eddy simulation of transition to turbulence in a boundary layer developing spatially over a flat plate. J. Fluid Mech., 326, 136, doi:10.1017/S0022112096008221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duncombe, J. D., 2017: Linear theory of roll instabilities in the ocean surface layer. M.S. thesis, Dept. of Ocean, Earth, and Atmospheric Sciences, Oregon State University, 76 pp.

  • Eliassen, A., and E. Kleinschmidt, 1957: Handbuch der Physik. Vol. 48. Springer-Verlag, 154 pp.

  • Emanuel, K., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Foo, E.-C., 1981: A two-dimensional diabatic isopycnal model—Simulating the coastal upwelling front. J. Phys. Oceanogr., 11, 604626, doi:10.1175/1520-0485(1981)011<0604:ATDDIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haine, T., and J. Marshall, 1998: Gravitational, symmetric, and baroclinic instability of the ocean mixed layer. J. Phys. Oceanogr., 28, 634658, https://doi.org/10.1175/1520-0485(1998)028<0634:GSABIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamlington, P. E., L. P. Van Roekel, B. Fox-Kemper, K. Julien, and G. P. Chini, 2014: Langmuir–submesoscale interactions: Descriptive analysis of multiscale frontal spindown simulations. J. Phys. Oceanogr., 44, 22492272, doi:10.1175/JPO-D-13-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, S., and A. Thorpe, 1992: The three-dimensional nature of ‘symmetric’ instability. Quart. J. Roy. Meteor. Soc., 100, 227258, https://doi.org/10.1002/qj.49711850404.

    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., and J. J. Finnigan, 1994: Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press, 289 pp.

    • Crossref
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1966: On the instability of Ekman boundary flow. J. Atmos. Sci., 23, 481494, doi:10.1175/1520-0469(1966)023<0481:OTIOEB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., and P. P. Sullivan, 1994: A comparison of shear- and buoyancy-driven planetary boundary layer flows. J. Atmos. Sci., 51, 9991022, doi:10.1175/1520-0469(1994)051<0999:ACOSAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1980: The Dynamics of the Upper Ocean. Cambridge University Press, 336 pp.

  • Pollard, R., P. Rhines, and R. Thompson, 1972: The deepening of the wind-mixed layer. Geophys. Fluid Dyn., 4, 381404, doi:10.1080/03091927208236105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramachandran, S., A. Tandon, and A. Mahadevan, 2013: Effect of subgrid-scale mixing on the evolution of forced submesoscale instabilities. Ocean Modell., 66, 4563, https://doi.org/10.1016/j.ocemod.2013.03.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., and R. A. de Szoeke, 1988: Semigeostrophic wind-driven thermocline upwelling at a coastal boundary. J. Phys. Oceanogr., 18, 13721383, doi:10.1175/1520-0485(1988)018<1372:SWDTUA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., and C. A. Paulson, 1988: Towed thermistor chain observations of fronts in the subtropical North Pacific. J. Geophys. Res., 93, 22372246, doi:10.1029/JC093iC03p02237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., and D. C. Chapman, 1995: Evolution of the instability of a mixed-layer front. J. Geophys. Res., 100, 67436759, doi:10.1029/94JC03216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., and E. D. Skyllingstad, 2016: Frontogenesis and turbulence: A numerical simulation. J. Atmos. Sci., 73, 50255040, https://doi.org/10.1175/JAS-D-16-0145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., and R. M. Samelson, 2012: Baroclinic frontal instabilities and turbulent mixing in the surface boundary layer. Part I: Unforced simulations. J. Phys. Oceanogr., 42, 17011716, doi:10.1175/JPO-D-10-05016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., W. D. Smyth, and G. B. Crawford, 2000: Resonant wind-driven mixing in the ocean boundary layer. J. Phys. Oceanogr., 30, 18661890, doi:10.1175/1520-0485(2000)030<1866:RWDMIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., E. D. Skyllingstad, G. Crawford, and H. Wijesekera, 2002: Nonlocal fluxes and Stokes drift effects in the K-profile parameterization. Ocean Dyn., 52, 104115, doi:10.1007/s10236-002-0012-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1966: On non-geostrophic baroclinic stability. J. Atmos. Sci., 23, 390400, doi:10.1175/1520-0469(1966)023<0390:ONGBS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sundermeyer, M. A., E. Skyllingstad, J. R. Ledwell, B. Concannon, E. A. Terray, D. Birch, S. D. Pierce, and B. Cervantes, 2014: Observations and numerical simulations of large-eddy circulation in the ocean surface mixed layer. Geophys. Res. Lett., 41, 75847590, doi:10.1002/2014GL061637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., and R. Ferrari, 2010: Buoyancy and wind-driven convection at mixed layer density fronts. J. Phys. Oceanogr., 40, 12221242, doi:10.1175/2010JPO4365.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., and C. M. Lee, 2005: Intensification of ocean fronts by down-front winds. J. Phys. Oceanogr., 35, 10861102, doi:10.1175/JPO2737.1.

  • Thomas, L. N., and J. R. Taylor , 2010: Reduction of the usable wind-work on the general circulation by forced symmetric instability. Geophys. Res. Lett., 37, L18 606, https://doi.org/10.1029/2010GL044680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., J. R. Taylor, R. Ferrari, and T. M. Joyce, 2013: Symmetric instability in the Gulf Stream. Deep-Sea Res. II, 91, 96110, doi:10.1016/j.dsr2.2013.02.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., J. R. Taylor, E. A. D’Asaro, C. M. Lee, J. M. Klymak, and A. Shcherbina, 2016: Symmetric instability, inertial oscillations, and turbulence at the Gulf Stream front. J. Phys. Oceanogr., 46, 197217, doi:10.1175/JPO-D-15-0008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vanneste, J., 1993: The Kelvin-Helmholtz instability in a non-geostrophic baroclinic unstable flow. Math. Comput. Modell., 17, 149154, doi:10.1016/0895-7177(93)90099-K.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 523 199 13
PDF Downloads 398 80 6