Dynamics of a Turbulent Buoyant Plume in a Stratified Fluid: An Idealized Model of Subglacial Discharge in Greenland Fjords

Ekaterina Ezhova Linné FLOW Centre, and Swedish e-Science Research Centre, Department of Mechanics, Royal Institute of Technology, Stockholm, Sweden

Search for other papers by Ekaterina Ezhova in
Current site
Google Scholar
PubMed
Close
,
Claudia Cenedese Physical Oceanography Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Claudia Cenedese in
Current site
Google Scholar
PubMed
Close
, and
Luca Brandt Linné FLOW Centre, and Swedish e-Science Research Centre, Department of Mechanics, Royal Institute of Technology, Stockholm, Sweden

Search for other papers by Luca Brandt in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study reports the results of large-eddy simulations of an axisymmetric turbulent buoyant plume in a stratified fluid. The configuration used is an idealized model of the plume generated by a subglacial discharge at the base of a tidewater glacier with an ambient stratification typical of Greenland fjords. The plume is discharged from a round source of various diameters and characteristic stratifications for summer and winter are considered. The classical theory for the integral parameters of a turbulent plume in a homogeneous fluid gives accurate predictions in the weakly stratified lower layer up to the pycnocline, and the plume dynamics are not sensitive to changes in the source diameter. In winter, when the stratification is similar to an idealized two-layer case, turbulent entrainment and generation of internal waves by the plume top are in agreement with the theoretical and numerical results obtained for turbulent jets in a two-layer stratification. In summer, instead, the stratification is more complex and turbulent entrainment by the plume top is significantly reduced. The subsurface layer in summer is characterized by a strong density gradient and the oscillating plume generates internal waves that might serve as an indicator of submerged plumes not penetrating to the surface.

Current affiliation: Department of Physics, University of Helsinki, Helsinki, Finland.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-16-0259.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ekaterina Ezhova, ekaterina.ezhova@helsinki.fi

Abstract

This study reports the results of large-eddy simulations of an axisymmetric turbulent buoyant plume in a stratified fluid. The configuration used is an idealized model of the plume generated by a subglacial discharge at the base of a tidewater glacier with an ambient stratification typical of Greenland fjords. The plume is discharged from a round source of various diameters and characteristic stratifications for summer and winter are considered. The classical theory for the integral parameters of a turbulent plume in a homogeneous fluid gives accurate predictions in the weakly stratified lower layer up to the pycnocline, and the plume dynamics are not sensitive to changes in the source diameter. In winter, when the stratification is similar to an idealized two-layer case, turbulent entrainment and generation of internal waves by the plume top are in agreement with the theoretical and numerical results obtained for turbulent jets in a two-layer stratification. In summer, instead, the stratification is more complex and turbulent entrainment by the plume top is significantly reduced. The subsurface layer in summer is characterized by a strong density gradient and the oscillating plume generates internal waves that might serve as an indicator of submerged plumes not penetrating to the surface.

Current affiliation: Department of Physics, University of Helsinki, Helsinki, Finland.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-16-0259.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ekaterina Ezhova, ekaterina.ezhova@helsinki.fi

Supplementary Materials

    • Supplemental Materials (ZIP 4.15 MB)
Save
  • Ansong, J. K., and B. R. Sutherland, 2010: Internal gravity waves generated by convective plumes. J. Fluid Mech., 648, 405434, doi:10.1017/S0022112009993193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bamber, J., M. van den Broeke, J. Ettema, J. Lenaerts, and E. Rignot, 2012: Recent large increases in freshwater fluxes from Greenland into the North Atlantic. Geophys. Res. Lett., 39, L19501, doi:10.1029/2012GL052552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burridge, H. C., G. R. Partridge, and P. F. Linden, 2016: The fluxes and behaviour of plumes inferred from measurements of coherent structures within images of the bulk flow. Atmos.–Ocean, 54, 403417, doi:10.1080/07055900.2016.1175337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cardoso, S. S. S., and A. W. Woods, 1993: Mixing by a turbulent plume in a confined stratified region. J. Fluid Mech., 250, 277305, doi:10.1017/S0022112093001466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carroll, D., and Coauthors, 2016: The impact of glacier geometry on meltwater plume structure and submarine melt in Greenland fjords. Geophys. Res. Lett., 43, 97399748, doi:10.1002/2016GL070170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cenedese, C., and V. M. Gatto, 2016a: Impact of a localized source of subglacial discharge on the heat flux and submarine melting of a tidewater glacier: A laboratory study. J. Phys. Oceanogr., 46, 31553163, doi:10.1175/JPO-D-16-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cenedese, C., and V. M. Gatto, 2016b: Impact of two plumes, interaction on submarine melting of tidewater glaciers: A laboratory study. J. Phys. Oceanogr., 46, 361367, doi:10.1175/JPO-D-15-0171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Childs, H., and Coauthors, 2012: VisIt: An end-user tool for visualizing and analyzing very large data. High Performance Visualization: Enabling Extreme-Scale Scientific Insight, CRC Press, 357–372.

  • Cowton, T., D. Slater, A. Sole, D. Goldberg, and P. Nienow, 2015: Modeling the impact of glacial runoff on fjord circulation and submarine melt rate using a new subgrid-scale parameterization for glacial plumes. J. Geophys. Res. Oceans, 120, 796812, doi:10.1002/2014JC010324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dimotakis, P., 2005: Turbulent mixing. Annu. Rev. Fluid Mech., 37, 329356, doi:10.1146/annurev.fluid.36.050802.122015.

  • Ezhova, E., C. Cenedese, and L. Brandt, 2016: Interaction of vertical turbulent jets with a thermocline. J. Phys. Oceanogr., 46, 34153437, doi:10.1175/JPO-D-16-0035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ezzamel, A., P. Salizzoni, and G. Hunt, 2015: Dynamical variability of axisymmetric buoyant plumes. J. Fluid Mech., 765, 576611, doi:10.1017/jfm.2014.694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fabregat, A., A. C. Poje, T. M. Özgökmen, and W. K. Dewar, 2016: Dynamics of multiphase turbulent plumes with hybrid buoyancy sources in stratified environments. Phys. Fluids, 28, 095109, doi:10.1063/1.4963313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, H. B., E. List, R. Koh, J. Imberger, and N. Brooks, 1979: Mixing in Inland and Coastal Waters. Academic Press, 483 pp.

  • Fischer, P. F., J. W. Lottes, and S. G. Kerkemeier, 2008: Nek5000: A fast and scalable open-source spectral element solver for CFD. Argonne National Laboratory Mathematics and Computer Science Division, http://nek5000.mcs.anl.gov.

    • Search Google Scholar
    • Export Citation
  • Gardner, A. S., and Coauthors, 2013: A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340, 852857, doi:10.1126/science.1234532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Germano, M., U. Piomelli, P. Moin, and W. H. Cabot, 1991: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids, 3A, 17601765, doi:10.1063/1.857955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Holland, D. M., and A. Jenkins, 1999: Modeling thermodynamic ice–ocean interactions at the base of an ice shelf. J. Phys. Oceanogr., 29, 17871800, doi:10.1175/1520-0485(1999)029<1787:MTIOIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, G. R., and N. B. Kaye, 2001: Virtual origin correction for lazy turbulent plumes. J. Fluid Mech., 435, 377396, doi:10.1017/S0022112001003871.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, G. R., and N. B. Kaye, 2005: Lazy plumes. J. Fluid Mech., 533, 329338, doi:10.1017/S002211200500457X.

  • Jenkins, A., 2011: Convection-driven melting near the grounding lines of ice shelves and tidewater glaciers. J. Phys. Oceanogr., 41, 22792294, doi:10.1175/JPO-D-11-03.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaye, N. B., 2008: Turbulent plumes in stratified environments: A review of recent work. Atmos.–Ocean, 46, 443441.

  • Kimura, S., P. Holland, A. Jenkins, and M. Piggott, 2014: The effect of meltwater plumes on the melting of a vertical glacier face. J. Phys. Oceanogr., 44, 30993117, doi:10.1175/JPO-D-13-0219.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mankoff, K. D., F. Straneo, C. Cenedese, S. B. Das, C. D. Richards, and H. Singh, 2016: Structure and dynamics of a subglacial discharge plume in a Greenland fjord. J. Geophys. Res. Oceans, 121, 86708688, doi:10.1002/2016JC011764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McConnochie, C. D., and R. Kerr, 2017: Enhanced ablation of a vertical ice wall due to an external freshwater plume. J. Fluid Mech., 810, 429447, doi:10.1017/jfm.2016.761.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morton, B. R., G. Taylor, and J. S. Turner, 1956: Turbulent gravitational convection from maintained and instantaneous sources. Proc. Roy. Soc. London, A234, 125, doi:10.1098/rspa.1956.0011.

    • Search Google Scholar
    • Export Citation
  • Özgökmen, T. M., and P. F. Fischer, 2008: On the role of bottom roughness in overflows. Ocean Modell., 20, 336361, doi:10.1016/j.ocemod.2007.10.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Özgökmen, T. M., T. Iliescu, and P. F. Fischer, 2009: Large eddy simulation of stratified mixing in a three-dimensional lock-exchange system. Ocean Modell., 26, 134155, doi:10.1016/j.ocemod.2008.09.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pham, M. V., F. Plourde, and K. S. Doan, 2006: Effect of swirl on pure turbulent thermal plume development. Int. J. Heat Fluid Flow, 27, 502513, doi:10.1016/j.ijheatfluidflow.2005.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pham, M. V., F. Plourde, and K. S. Doan, 2007: Direct and large-eddy simulations of a pure thermal plume. Phys. Fluids, 19, 125103, doi:10.1063/1.2813043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plourde, F., M. V. Pham, K. S. Doan, and S. Balachandar, 2008: Direct numerical simulations of a rapidly expanding thermal plume: Structure and entrainment interaction. J. Fluid Mech., 604, 99123, doi:10.1017/S0022112008001006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sciascia, R., F. Straneo, C. Cenedese, and P. Heimbach, 2013: Seasonal variability of submarine melt rate and circulation in an east Greenland fjord. J. Geophys. Res. Oceans, 118, 24922506, doi:10.1002/jgrc.20142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shabbir, A., and W. K. George, 1994: Experiments on a round turbulent buoyant plume. J. Fluid Mech., 275, 132, doi:10.1017/S0022112094002260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, A., and Coauthors, 2012: A reconciled estimate of ice-sheet mass balance. Science, 338, 11831189, doi:10.1126/science.1228102.

  • Shrinivas, A. B., and G. R. Hunt, 2014: Unconfined turbulent entrainment across density interfaces. J. Fluid Mech., 757, 573598, doi:10.1017/jfm.2014.474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slater, D. A., P. W. Nienow, T. R. Cowton, D. N. Goldberg, and A. J. Sole, 2015: Effect of near-terminus subglacial hydrology on tidewater glacier submarine melt rates. Geophys. Res. Lett., 42, 28612868, doi:10.1002/2014GL062494.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. Mon. Wea. Rev., 91, 99164, doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straneo, F., and C. Cenedese, 2015: Dynamics of Greenland’s glacial fjords and their role in climate. Annu. Rev. Mar. Sci., 7, 89112, doi:10.1146/annurev-marine-010213-135133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straneo, F., R. Curry, D. Sutherland, G. Hamilton, C. Cenedese, K. Vage, and L. Stearns, 2011: Impact of fjord dynamics and glacial runoff on the circulation near Helheim Glacier. Nat. Geosci., 4, 322327, doi:10.1038/ngeo1109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straneo, F., and Coauthors, 2012: Characteristics of ocean waters reaching Greenland’s glaciers. Ann. Glaciol., 53, 202210, doi:10.3189/2012AoG60A059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troitskaya, Y. I., D. A. Sergeev, E. V. Ezhova, I. A. Soustova, and V. I. Kazakov, 2008: Self-induced internal waves excited by buoyant plumes in a stratified tank. Dokl. Earth Sci., 419, 506510, doi:10.1134/S1028334X08030343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Reeuwijk, M., P. Salizzoni, G. R. Hunt, and J. Craske, 2016: Turbulent transport and entrainment in jets and plumes: A DNS study. Phys. Rev. Fluids, 1, 074301, doi:10.1103/PhysRevFluids.1.074301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Y., E. Rignot, D. Menemenlis, and M. Koppes, 2012: Numerical experiments on subaqueous melting of Greenland tidewater glaciers in response to ocean warming and enhanced subglacial discharge. Ann. Glaciol., 53, 229234, doi:10.3189/2012AoG60A139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Y., E. Rignot, I. Fenty, D. Menemenlis, and M. M. Flexas, 2013: Subaqueous melting of Store Glacier, west Greenland from three-dimensional, high-resolution numerical modeling and ocean observations. Geophys. Res. Lett., 40, 46484653, doi:10.1002/grl.50825.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 522 133 8
PDF Downloads 519 121 4