Generation of Upwelling Circulation under Downwelling-Favorable Wind within Bottom-Attached, Buoyant Coastal Currents

Sih-Yu Chen Institute of Oceanography, National Taiwan University, Taipei, Taiwan

Search for other papers by Sih-Yu Chen in
Current site
Google Scholar
PubMed
Close
and
Shih-Nan Chen Institute of Oceanography, National Taiwan University, Taipei, Taiwan

Search for other papers by Shih-Nan Chen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A two-dimensional modeling study by Moffat and Lentz recently reported that downwelling-favorable wind can induce cross-shore upwelling circulation within a bottom-attached, buoyant coastal current. Here, we extend the problem to three dimensions. The driving mechanism and the sensitivity for the upwelling circulation are studied, using a primitive equation ocean model and an analytical model. After the initial downwelling adjustment that steepens the isopycnals and compresses the coastal current, the cross-shore flow can switch to steady upwelling circulation. This reverse circulation coincides with a vertically well-mixed water column and persists until interrupted by the arrival of river plume bulge from upstream. During the upwelling phase, the ageostrophic cross-shore flow follows the Ekman balance. The sense of cross-shore circulation is governed by a dimensionless parameter, the shear ratio, which measures the relative size of geostrophic shear and velocity shear supported by the wind in the shallow-water limit. Upwelling circulation occurs when the shear ratio is greater than one. This condition represents that, near the surface, the wind-intensified pressure gradient exceeds the maximum possible Coriolis force associated with the wind-forced, alongshore flow. The resulting upwelling circulation acts to slump the isopycnals to restore the geostrophic balance. Therefore, within a coastal current, decreasing wind stress in fact strengthens the upwelling circulation, as a weaker wind produces a weaker shear and thus increases the imbalance. This inverse relation holds until the wind is too weak to mix the water column. Based on the analytical model, a regime classification for the cross-shore circulation under downwelling-favorable wind is proposed. An observational example is given.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shih-Nan Chen, schen77@ntu.edu.tw

Abstract

A two-dimensional modeling study by Moffat and Lentz recently reported that downwelling-favorable wind can induce cross-shore upwelling circulation within a bottom-attached, buoyant coastal current. Here, we extend the problem to three dimensions. The driving mechanism and the sensitivity for the upwelling circulation are studied, using a primitive equation ocean model and an analytical model. After the initial downwelling adjustment that steepens the isopycnals and compresses the coastal current, the cross-shore flow can switch to steady upwelling circulation. This reverse circulation coincides with a vertically well-mixed water column and persists until interrupted by the arrival of river plume bulge from upstream. During the upwelling phase, the ageostrophic cross-shore flow follows the Ekman balance. The sense of cross-shore circulation is governed by a dimensionless parameter, the shear ratio, which measures the relative size of geostrophic shear and velocity shear supported by the wind in the shallow-water limit. Upwelling circulation occurs when the shear ratio is greater than one. This condition represents that, near the surface, the wind-intensified pressure gradient exceeds the maximum possible Coriolis force associated with the wind-forced, alongshore flow. The resulting upwelling circulation acts to slump the isopycnals to restore the geostrophic balance. Therefore, within a coastal current, decreasing wind stress in fact strengthens the upwelling circulation, as a weaker wind produces a weaker shear and thus increases the imbalance. This inverse relation holds until the wind is too weak to mix the water column. Based on the analytical model, a regime classification for the cross-shore circulation under downwelling-favorable wind is proposed. An observational example is given.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Shih-Nan Chen, schen77@ntu.edu.tw
Save
  • Avicola, G., and P. Huq, 2003: The role of outflow geometry in the formation of the recirculating bulge region in coastal buoyant outflows. J. Mar. Res., 61, 411434, doi:10.1357/002224003322384870.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chao, S. Y., 1988: Wind-driven motion of estuarine plumes. J. Phys. Oceanogr., 18, 11441166, doi:10.1175/1520-0485(1988)018<1144:WDMOEP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chao, S. Y., and W. C. Boicourt, 1986: Onset of estuarine plumes. J. Phys. Oceanogr., 16, 21372149, doi:10.1175/1520-0485(1986)016<2137:OOEP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, D. C., and S. J. Lentz, 1994: Trapping of a coastal density front by the bottom boundary layer. J. Phys. Oceanogr., 24, 14641479, doi:10.1175/1520-0485(1994)024<1464:TOACDF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. N., 2014: Enhancement of alongshore freshwater transport in surface-advected river plumes by tides. J. Phys. Oceanogr., 44, 29512971, doi:10.1175/JPO-D-14-0008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Csanady, G. T., 1982: Circulation in the Coastal Ocean. D. Reidel, 279 pp.

    • Crossref
    • Export Citation
  • Cushman-Roisin, B., and C. E. Naimie, 2002: A 3D finite-element model of the Adriatic tides. J. Mar. Syst., 37, 279297, doi:10.1016/S0924-7963(02)00204-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ekman, V. W., 1905: On the influence of the earth’s rotation on ocean-currents. Ark. Mat. Astron. Fys., 2, 153.

  • Epifanio, C. E., and R. W. Garvine, 2001: Larval transport on the Atlantic continental shelf of North America: A review. Estuarine Coastal Shelf Sci., 52, 5177, doi:10.1006/ecss.2000.0727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Estrade, P., P. Marchesiello, D. Verdière, A. Colin, and C. Roy, 2008: Cross-shelf structure of coastal upwelling: A two-dimensional extension of Ekman’s theory and a mechanism for inner shelf upwelling shut down. J. Mar. Res., 66, 589616, doi:10.1357/002224008787536790.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fewings, M. R., S. J. Lentz, and J. Fredericks, 2008: Observations of cross‐shelf flow driven by cross‐shelf winds over the inner continental shelf. J. Phys. Oceanogr., 38, 23582378, doi:10.1175/2008JPO3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fong, D. A., and W. R. Geyer, 2001: Response of a river plume during an upwelling favorable wind event. J. Geophys. Res., 106, 10671084, doi:10.1029/2000JC900134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fong, D. A., and W. R. Geyer, 2002: The alongshore transport of freshwater in a surface-trapped river plume. J. Phys. Oceanogr., 32, 957972, doi:10.1175/1520-0485(2002)032<0957:TATOFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia Berdeal, I., B. M. Hickey, and M. Kawase, 2002: Influence of wind stress and ambient flow on a high discharge river plume. J. Geophys. Res., 107, 3130, doi:10.1029/2001JC000932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garvine, R. W., 1987: Estuary plumes and fronts in shelf waters: A layer model. J. Phys. Oceanogr., 17, 18771896, doi:10.1175/1520-0485(1987)017<1877:EPAFIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garvine, R. W., 1999: Penetration of buoyant coastal discharge onto the continental shelf: A numerical model experiment. J. Phys. Oceanogr., 29, 18921909, doi:10.1175/1520-0485(1999)029<1892:POBCDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geyer, W. R., P. S. Hill, and G. C. Kineke, 2004: The transport, transformation and dispersal of sediment by buoyant coastal flows. Cont. Shelf Res., 24, 927949, doi:10.1016/j.csr.2004.02.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, D. V., and M. Rattray, 1965: Gravitational circulation in straits and estuaries. J. Mar. Res., 23, 104122.

  • Harris, C. K., C. R. Sherwood, R. P. Signell, A. J. Bever, and J. C. Warner, 2008: Sediment dispersal in the northwestern Adriatic Sea. J. Geophys. Res., 113, C11S03, doi:10.1029/2006JC003868.

    • Search Google Scholar
    • Export Citation
  • Hickey, B., S. Geier, N. Kachel, and A. MacFadyen, 2005: A bi-directional river plume: The Columbia in summer. Cont. Shelf Res., 25, 16311656, doi:10.1016/j.csr.2005.04.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horner-Devine, A. R., D. A. Fong, S. G. Monismith, and T. Maxworthy, 2006: Laboratory experiments simulating a coastal river inflow. J. Fluid Mech., 555, 203232, doi:10.1017/S0022112006008937.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, W. P., and B. E. Launder, 1972: The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Transfer, 15, 301314, doi:10.1016/0017-9310(72)90076-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kantha, L. H., and C. A. Clayson, 1994: An improved mixed layer model for geophysical applications. J. Geophys. Res., 99, 25 23525 266, doi:10.1029/94JC02257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., 1995: Sensitivity of the inner-shelf circulation to the form of the eddy viscosity profile. J. Phys. Oceanogr., 25, 1928, doi:10.1175/1520-0485(1995)025<0019:SOTISC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., 2001: The influence of stratification on the wind-driven cross-shelf circulation over the North Carolina shelf. J. Phys. Oceanogr., 31, 27492760, doi:10.1175/1520-0485(2001)031<2749:TIOSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., 2004: The response of buoyant coastal plumes to upwelling-favorable winds. J. Phys. Oceanogr., 34, 24582469, doi:10.1175/JPO2647.1.

  • Lentz, S. J., and K. R. Helfrich, 2002: Buoyant gravity currents along a sloping bottom in a rotating fluid. J. Fluid Mech., 464, 251278, doi:10.1017/S0022112002008868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., and J. Largier, 2006: The influence of wind forcing on the Chesapeake Bay buoyant coastal current. J. Phys. Oceanogr., 36, 13051316, doi:10.1175/JPO2909.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., and M. R. Fewings, 2012: The wind- and wave-driven inner-shelf circulation. Annu. Rev. Mar. Sci., 4, 317343, doi:10.1146/annurev-marine-120709-142745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magaldi, M. G., T. M. Özgökmen, A. Griffa, and M. Rixen, 2010: On the response of a turbulent coastal buoyant current to wind events: The case of the western Adriatic Current. Ocean Dyn., 60, 93122, doi:10.1007/s10236-009-0247-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masse, A. K., and C. R. Murthy, 1992: Analysis of the Niagara River plume dynamics. J. Geophys. Res., 97, 24032420, doi:10.1029/91JC02726.

  • Matano, R. P., and E. D. Palma, 2013: The impact of boundary conditions on the upstream spreading of bottom-trapped plumes. J. Phys. Oceanogr., 43, 10601069, doi:10.1175/JPO-D-12-0116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGillicuddy, D. J., Jr., R. P. Signell, C. A. Stock, B. A. Keafer, M. D. Keller, R. D. Hetland, and D. M. Anderson, 2003: A mechanism for offshore initiation of harmful algal blooms in the coastal Gulf of Maine. J. Plankton Res., 25, 11311138, doi:10.1093/plankt/25.9.1131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moffat, C., and S. Lentz, 2012: On the response of a buoyant plume to downwelling-favorable wind stress. J. Phys. Oceanogr., 42, 10831098, doi:10.1175/JPO-D-11-015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oey, L. Y., and G. L. Mellor, 1993: Subtidal variability of estuarine outflow, plume, and coastal current: A model study. J. Phys. Oceanogr., 23, 164171, doi:10.1175/1520-0485(1993)023<0164:SVOEOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rennie, S. E., J. L. Largier, and S. J. Lentz, 1999: Observations of a pulsed buoyancy current downstream of Chesapeake Bay. J. Geophys. Res., 104, 18 22718 240, doi:10.1029/1999JC900153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, doi:10.1016/j.ocemod.2004.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shcherbina, A. Y., and G. G. Gawarkiewicz, 2008: A coastal current in winter: 2. Wind forcing and cooling of a coastal current east of Cape Cod. J. Geophys. Res., 113, C10014, doi:10.1029/2008JC004750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, C. R., and Coauthors, 2004: Sediment dynamics in the Adriatic Sea investigated with coupled models. Oceanography, 17, 5869, doi:10.5670/oceanog.2004.04.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Souza, A. J., and J. H. Simpson, 1997: Controls on stratification in the Rhine ROFI system. J. Mar. Syst., 12, 311323, doi:10.1016/S0924-7963(96)00105-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spall, M. A., and L. N. Thomas, 2016: Downfront winds over buoyant coastal plumes. J. Phys. Oceanogr., 46, 31393154, doi:10.1175/JPO-D-16-0042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., and C. M. Lee, 2005: Intensification of ocean fronts by down-front winds. J. Phys. Oceanogr., 35, 10861102, doi:10.1175/JPO2737.1.

  • Wenegrat, J. O., and M. J. McPhaden, 2016: Wind, waves, and fronts: Frictional effects in a generalized Ekman model. J. Phys. Oceanogr., 46, 371394, doi:10.1175/JPO-D-15-0162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitney, M. M., and R. W. Garvine, 2005: Wind influence on a coastal buoyant outflow. J. Geophys. Res., 110, C03014, doi:10.1029/2003JC002261.

    • Search Google Scholar
    • Export Citation
  • Yankovsky, A. E., and D. C. Chapman, 1997: A simple theory for the fate of buoyant coastal discharges. J. Phys. Oceanogr., 27, 13861401, doi:10.1175/1520-0485(1997)027<1386:ASTFTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 557 179 14
PDF Downloads 421 112 14