Buoy Measurements of Wind–Wave Relations during Hurricane Matthew in 2016

S. A. Hsu School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, China, and Coastal Studies Institute, and Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, Louisiana

Search for other papers by S. A. Hsu in
Current site
Google Scholar
PubMed
Close
,
Yijun He School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Yijun He in
Current site
Google Scholar
PubMed
Close
, and
Hui Shen School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, China, and Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada

Search for other papers by Hui Shen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Studies suggested that neutral-stability wind speed at 10 m U10 ≥ 9 m s −1 and wave steepness Hs/Lp ≥ 0.020 can be taken as criteria for aerodynamically rough ocean surface and the onset of a wind sea, respectively; here, Hs is the significant wave height, and Lp is the peak wavelength. Based on these criteria, it is found that, for the growing wind seas when the wave steepness increases with time during Hurricane Matthew in 2016 before the arrival of its center, the dimensionless significant wave height and peak period is approximately linearly related, resulting in U10 = 35Hs/Tp; here, Tp is the dominant or peak wave period. This proposed wind–wave relation for aerodynamically rough flow over the wind seas is further verified under Hurricane Ivan and North Sea storm conditions. However, after the passage of Matthew’s center, when the wave steepness was nearly steady, a power-law relation between the dimensionless wave height and its period prevailed with its exponent equal to 1.86 and a very high correlation coefficient of 0.97.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: S. A. Hsu, sahsu@lsu.edu

Abstract

Studies suggested that neutral-stability wind speed at 10 m U10 ≥ 9 m s −1 and wave steepness Hs/Lp ≥ 0.020 can be taken as criteria for aerodynamically rough ocean surface and the onset of a wind sea, respectively; here, Hs is the significant wave height, and Lp is the peak wavelength. Based on these criteria, it is found that, for the growing wind seas when the wave steepness increases with time during Hurricane Matthew in 2016 before the arrival of its center, the dimensionless significant wave height and peak period is approximately linearly related, resulting in U10 = 35Hs/Tp; here, Tp is the dominant or peak wave period. This proposed wind–wave relation for aerodynamically rough flow over the wind seas is further verified under Hurricane Ivan and North Sea storm conditions. However, after the passage of Matthew’s center, when the wave steepness was nearly steady, a power-law relation between the dimensionless wave height and its period prevailed with its exponent equal to 1.86 and a very high correlation coefficient of 0.97.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: S. A. Hsu, sahsu@lsu.edu
Save
  • Andreas, E. L, L. Mahrt, and D. Vickers, 2012: A new drag relation for aerodynamically rough flow over the ocean. J. Atmos. Sci., 69, 25202537, doi:10.1175/JAS-D-11-0312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Babanin, A. V., and Y. P. Soloviev, 1998: Field investigation of transformation of the wind wave frequency spectrum with fetch and the stage of development. J. Phys. Oceanogr., 28, 563576, doi:10.1175/1520-0485(1998)028<0563:FIOTOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Badulin, S. I., A. V. Babanin, V. E. Zakharov, and D. Resio, 2007: Weakly turbulent laws of wind-wave growth. J. Fluid Mech., 591, 339378, doi:10.1017/S0022112007008282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckley, M. P., and F. Veron, 2016: Structure of the airflow above surface waves. J. Phys. Oceanogr., 46, 13771397, doi:10.1175/JPO-D-15-0135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caulliez, G., V. Makin, and V. Kudryavtsev, 2008: Drag of the water surface at very short fetches: Observations and modeling. J. Phys. Oceanogr., 38, 20382055, doi:10.1175/2008JPO3893.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davidan, I. N., 1980: Investigation of wave probability structure on field data (in Russian). Tr. Gos. Okeanogr. Inst., 151, 826.

  • Dobson, F., W. Perrie, and B. Toulany, 1989: On the deep-water fetch law for wind-generated gravity waves. Atmos.–Ocean, 27, 210236, doi:10.1080/07055900.1989.9649334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., J. Hamilton, and W. H. Hui, 1985: Directional spectra of wind-generated waves. Philos. Trans. Roy. Soc. London, A315, 509562, doi:10.1098/rsta.1985.0054.

    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., P. K. Taylor, and M. J. Yelland, 2005: Parameterizing the sea surface roughness. J. Phys. Oceanogr., 35, 835848, doi:10.1175/JPO2704.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ewans, K. C., and A. C. Kibblewhite, 1990: An examination of fetch-limited wave growth off the west coast of New Zealand by a comparison with the JONSWAP results. J. Phys. Oceanogr., 20, 12781296, doi:10.1175/1520-0485(1990)020<1278:AEOFLW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gagnaire-Renou, E., M. Benoit, and S. I. Badulin, 2011: On weakly turbulent scaling of wind sea in simulations of fetch-limited growth. J. Fluid Mech., 669, 178213, doi:10.1017/S0022112010004921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geernaert, G. L., S. E. Larsen, and F. Hansen, 1987: Measurements of the wind stress, heat flux, and turbulence intensity during storm conditions over the North Sea. J. Geophys. Res., 92, 13 12713 139, doi:10.1029/JC092iC12p13127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hara, T., and S. E. Belcher, 2002: Wind forcing in the equilibrium range of wind-wave spectra. J. Fluid Mech., 470, 223245, doi:10.1017/S0022112002001945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hara, T., and P. P. Sullivan, 2015: Wave boundary layer turbulence over surface waves in a strongly forced condition. J. Phys. Oceanogr., 45, 868883, doi:10.1175/JPO-D-14-0116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasse, L., and H. Weber, 1985: On the conversion of Pasquill categories for use over sea. Bound.-Layer Meteor., 31, 177185, doi:10.1007/BF00121176.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., and Coauthors, 1973: Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Ergänzungsheft zur Deutschen Hydrographischen Zeitschrift Reihe A(8) 12, 95 pp.

  • Hasselmann, K., W. Sell, D. B. Ross, and P. Müller, 1976: A parametric wave prediction model. J. Phys. Oceanogr., 6, 200228, doi:10.1175/1520-0485(1976)006<0200:APWPM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holthuijsen, L. H., M. D. Powell, and J. D. Pietrzak, 2012: Wind and waves in extreme hurricanes. J. Geophys. Res., 117, C09003, doi:10.1029/2012JC007983.

    • Search Google Scholar
    • Export Citation
  • Hsu, S. A., 2003: Estimating overwater friction velocity and exponent of power-law wind profile from gust factor during storms. J. Waterw. Port Coastal Ocean Eng., 129, 174177, doi:10.1061/(ASCE)0733-950X(2003)129:4(174).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 2005: Drag coefficient, dynamic roughness and reference wind speed. J. Oceanogr., 61, 399413, doi:10.1007/s10872-005-0050-2.

  • Hwang, P. A., 2016: Fetch- and duration-limited nature of surface wave growth inside tropical cyclones: With applications to air–sea exchange and remote sensing. J. Phys. Oceanogr., 46, 4156, doi:10.1175/JPO-D-15-0173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., and D. W. Wang, 2004: Field measurements of duration-limited growth of wind-generated ocean surface waves at young stage of development. J. Phys. Oceanogr., 34, 23162326, doi:10.1175/1520-0485(2004)034<2316:FMODGO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., and E. J. Walsh, 2016: Azimuthal and radial variation of wind-generated surface waves inside tropical cyclones. J. Phys. Oceanogr., 46, 26052621, doi:10.1175/JPO-D-16-0051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., H. Garcia-Nava, and F. J. Ocampo-Torres, 2011: Observations of wind wave development in mixed seas and unsteady wind forcing. J. Phys. Oceanogr., 41, 23432362, doi:10.1175/JPO-D-11-044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., F. J. Ocampo-Torres, and H. García-Nava, 2012: Wind sea and swell separation of 1D wave spectrum by a spectrum integration method. J. Atmos. Oceanic Technol., 29, 116128, doi:10.1175/JTECH-D-11-00075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahma, K. K., 1981: A study of growth of the wave spectrum with fetch. J. Phys. Oceanogr., 11, 15031515, doi:10.1175/1520-0485(1981)011<1503:ASOTGO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichl, B. G., T. Hara, and I. Ginis, 2014: Sea state dependence of the wind stress over the ocean under hurricane winds. J. Geophys. Res. Oceans, 119, 3051, doi:10.1002/2013JC009289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romero, L., and W. K. Melville, 2010: Airborne observations of fetch-limited waves in the Gulf of Tehuantepec. J. Phys. Oceanogr., 40, 441465, doi:10.1175/2009JPO4127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., and J. C. McWilliams, 2010: Dynamics of winds and currents coupled to surface waves. Annu. Rev. Fluid Mech., 42, 1942, doi:10.1146/annurev-fluid-121108-145541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, P. T., and M. Yelland, 2001: The dependence of sea roughness on the height and steepness of the waves. J. Phys. Oceanogr., 31, 572590, doi:10.1175/1520-0485(2001)031<0572:TDOSSR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toba, Y., 1972: Local balance in the air–sea boundary processes. Part I. On the growth process of wind waves. J. Oceanogr. Soc. Japan, 28, 109121, doi:10.1007/BF02109772.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vickery, P. J., D. Wadhera, M. D. Powell, and Y. Chen, 2009: A hurricane boundary layer and wind field model for use in engineering applications. J. Appl. Meteor. Climatol., 48, 381405, doi:10.1175/2008JAMC1841.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wen, S. C., D. C. Zhang, P. Z. Guo, and B. H. Chen, 1989: Parameters in wind-wave frequency spectra and their bearings on spectrum forms and growth. Acta Oceanol. Sin., 8, 1539.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., 1988: Parametric hurricane wave prediction model. J. Waterw. Port Coastal Ocean Eng., 114, 637652, doi:10.1061/(ASCE)0733-950X(1988)114:5(637).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., 1998: Observations of the spectra of hurricane generated waves. Ocean Eng., 25, 261276, doi:10.1016/S0029-8018(97)00011-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., 2006: Directional spectra of hurricane wind waves. J. Geophys. Res., 111, C08020, doi:10.1029/2006JC003540.

  • Zakharov, V. E., and M. M. Zaslavsky, 1983: The dependence of wave parameters on wind velocity, its duration and fetch in a weak turbulence theory of wind waves. Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana, 19, 406415.

    • Search Google Scholar
    • Export Citation
  • Zakharov, V. E., S. I. Badulin, P. A. Hwang, and G. Caulliez, 2015: Universality of sea wave growth and its physical roots. J. Fluid Mech., 780, 503535, doi:10.1017/jfm.2015.468.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 397 100 7
PDF Downloads 327 81 6