Scattering of a Semidiurnal Barotropic Kelvin Wave into Internal Waves over Wide Continental Shelves

Alexander E. Yankovsky School of the Earth, Ocean and Environment, University of South Carolina, Columbia, South Carolina

Search for other papers by Alexander E. Yankovsky in
Current site
Google Scholar
PubMed
Close
and
Tianyi Zhang School of the Earth, Ocean and Environment, University of South Carolina, Columbia, South Carolina

Search for other papers by Tianyi Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In boundary areas of the World Ocean, a semidiurnal tide propagates in the form of a Kelvin wave mode trapped by the coastline. Over wide continental shelves, the semidiurnal tide is no longer a pure Kelvin wave but attains features of a zero-mode edge wave. As a result, the wave structure and the alongshore energy flux concentrate over the continental shelf and slope topography and become very sensitive to the variations of shelf geometry. When a semidiurnal Kelvin wave encounters alongshore changes of the shelf width, its energy scatters into other wave modes, including internal waves. A particularly strong scattering occurs on wide shelves, where Kelvin wave structure undergoes significant modifications over short alongshore distances. These dynamics are studied using the Regional Ocean Modeling System (ROMS). This study found that when the alongshore energy flux in the Kelvin wave mode converges on the shelf, the offshore wave radiation occurs through barotropic waves, while for the divergent alongshore energy flux, internal waves are generated. Under favorable conditions, more than 10% of the incident barotropic Kelvin wave energy flux can be scattered into internal waves. For the surface-intensified stratification mostly the first internal mode is generated, while for the uniform with depth stratification, multiple internal modes are present in the form of an internal wave beam. A nondimensional internal wave scattering parameter is derived based on the theoretical properties of a Kelvin wave mode, bottom topography, and stratification.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alexander E. Yankovsky, ayankovsky@geol.sc.edu

Abstract

In boundary areas of the World Ocean, a semidiurnal tide propagates in the form of a Kelvin wave mode trapped by the coastline. Over wide continental shelves, the semidiurnal tide is no longer a pure Kelvin wave but attains features of a zero-mode edge wave. As a result, the wave structure and the alongshore energy flux concentrate over the continental shelf and slope topography and become very sensitive to the variations of shelf geometry. When a semidiurnal Kelvin wave encounters alongshore changes of the shelf width, its energy scatters into other wave modes, including internal waves. A particularly strong scattering occurs on wide shelves, where Kelvin wave structure undergoes significant modifications over short alongshore distances. These dynamics are studied using the Regional Ocean Modeling System (ROMS). This study found that when the alongshore energy flux in the Kelvin wave mode converges on the shelf, the offshore wave radiation occurs through barotropic waves, while for the divergent alongshore energy flux, internal waves are generated. Under favorable conditions, more than 10% of the incident barotropic Kelvin wave energy flux can be scattered into internal waves. For the surface-intensified stratification mostly the first internal mode is generated, while for the uniform with depth stratification, multiple internal modes are present in the form of an internal wave beam. A nondimensional internal wave scattering parameter is derived based on the theoretical properties of a Kelvin wave mode, bottom topography, and stratification.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alexander E. Yankovsky, ayankovsky@geol.sc.edu
Save
  • Baines, P. G., 1982: On internal tide generation models. Deep-Sea Res., 29A, 307338, doi:10.1016/0198-0149(82)90098-X.

  • Brink, K. H., 1991: Coastal-trapped waves and wind-driven currents over the continental shelf. Annu. Rev. Fluid Mech., 23, 389412, doi:10.1146/annurev.fl.23.010191.002133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brink, K. H., and D. C. Chapman, 1987: Programs for computing properties of coastal-trapped waves and wind-driven motions over the continental shelf and slope. 2nd ed. Woods Hole Oceanographic Institute Tech. Rep. WHOI-87-24, 50 pp.

    • Crossref
    • Export Citation
  • Buijsman, M. C., B. K. Arbic, J. A. M. Green, R. W. Helber, J. G. Richman, J. F. Shriver, P. G. Timko, and A. Wallcraft, 2015: Optimizing internal wave drag in a forward barotropic model with semidiurnal tides. Ocean Modell., 85, 4255, doi:10.1016/j.ocemod.2014.11.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, D. C., 1985: Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model. J. Phys. Oceanogr., 15, 10601075, doi:10.1175/1520-0485(1985)015<1060:NTOCSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Combes, V., and R. P. Matano, 2014: A two-way nested simulation of the oceanic circulation in the southwestern Atlantic. J. Geophys. Res. Oceans, 119, 731756, doi:10.1002/2013JC009498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dale, A. C., J. M. Huthnance, and T. J. Sherwin, 2001: Coastal-trapped waves and tides at near-inertial frequencies. J. Phys. Oceanogr., 31, 29582970, doi:10.1175/1520-0485(2001)031<2958:CTWATA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and R. D. Ray, 2001: Estimates of M2 tidal energy dissipation from TOPEX/Poseidon altimeter data. J. Geophys. Res., 106, 22 47522 502, doi:10.1029/2000JC000699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Falahat, S., and J. Nycander, 2015: On the generation of bottom-trapped internal tides. J. Phys. Oceanogr., 45, 526545, doi:10.1175/JPO-D-14-0081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Falahat, S., J. Nycander, F. Roquet, and M. Zarroug, 2014: Global calculation of tidal energy conversion into vertical normal modes. J. Phys. Oceanogr., 44, 32253244, doi:10.1175/JPO-D-14-0002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., and E. Kunze, 2007: Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech., 39, 5787, doi:10.1146/annurev.fluid.39.050905.110227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glorioso, P. D., and R. A. Flather, 1997: The Patagonian shelf tides. Prog. Oceanogr., 40, 263283, doi:10.1016/S0079-6611(98)00004-4.

  • Green, J. A. M., J. H. Simpson, S. Legg, and M. R. Palmer, 2008: Internal waves, baroclinic energy fluxes and mixing at the European shelf edge. Cont. Shelf Res., 28, 937950, doi:10.1016/j.csr.2008.01.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haidvogel, D. B., and A. Beckmann, 1999: Numerical Ocean Circulation Modeling. Imperial College Press, 318 pp.

    • Crossref
    • Export Citation
  • Huthnance, J. M., 1975: On trapped waves over a continental shelf. J. Fluid Mech., 69, 689704, doi:10.1017/S0022112075001632.

  • Huthnance, J. M., 1978: On coastal trapped waves: Analysis and numerical calculation by inverse iteration. J. Phys. Oceanogr., 8, 7492, doi:10.1175/1520-0485(1978)008<0074:OCTWAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huthnance, J. M., 1995: Circulation, exchange and water masses at the ocean margin: The role of physical processes at the shelf edge. Prog. Oceanogr., 35, 353431, https://doi.org/10.1016/0079-6611(95)80003-C.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ke, Z., and A. E. Yankovsky, 2010: The hybrid Kelvin–edge wave and its role in tidal dynamics. J. Phys. Oceanogr., 40, 27572767, doi:10.1175/2010JPO4430.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., H. L. Simmons, D. Braznikov, S. Kelly, J. A. MacKinnon, M. H. Alford, R. Pinkel, and J. D. Nash, 2016: Reflection of linear internal tides from realistic topography: The Tasman continental slope. J. Phys. Oceanogr., 46, 33213337, doi:10.1175/JPO-D-16-0061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., L. K. Rosenfeld, G. S. Carter, and M. C. Gregg, 2002: Internal waves in Monterey Submarine Canyon. J. Phys. Oceanogr., 32, 18901913, doi:10.1175/1520-0485(2002)032<1890:IWIMSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurapov, A. L., G. D. Egbert, J. S. Allen, R. N. Miller, S. Y. Erofeeva, and P. M. Kosro, 2003: The M2 internal tide off Oregon: Inferences from data assimilation. J. Phys. Oceanogr., 33, 17331757, doi:10.1175/2397.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, P. L.-F., H. Yeh, P. Lin, K.-T. Chang, and Y.-S. Cho, 1998: Generation and evolution of edge-wave packets. Phys. Fluids, 10, 16351657, doi:10.1063/1.869682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mysak, L. A., 1980: Topographically trapped waves. Annu. Rev. Fluid Mech., 12, 4576, doi:10.1146/annurev.fl.12.010180.000401.

  • Orlanski, I., 1976: A simple boundary condition for unbounded hyperbolic flows. J. Comput. Phys., 21, 251269, doi:10.1016/0021-9991(76)90023-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palma, E. D., R. P. Matano, and A. R. Piola, 2004: A numerical study of the southwestern Atlantic shelf circulation: Barotropic response to tidal and wind forcing. J. Geophys. Res., 109, C08014, doi:10.1029/2004JC002315.

    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., 1970: Edge-, bottom-, and Rossby waves in a rotating stratified fluid. Geophys. Fluid Dyn., 1, 273302, doi:10.1080/03091927009365776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, doi:10.1016/j.ocemod.2004.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., R. W. Hallberg, and B. K. Arbic, 2004: Internal wave generation in a global baroclinic tide model. Deep-Sea Res. II, 51, 30433068, doi:10.1016/j.dsr2.2004.09.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, Y. T., and D. Haidvogel, 1994: A semi-implicit ocean circulation model using a generalized topography-following coordinate system. J. Comput. Phys., 115, 228244, doi:10.1006/jcph.1994.1189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stashchuk, N., and V. Vlasenko, 2017: Bottom trapped internal waves over the Malin Sea continental slope. Deep-Sea Res. I, 119, 6880, doi:10.1016/j.dsr.2016.11.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vlasenko, V., N. Stashchuk, M. E. Inall, and J. E. Hopkins, 2014: Tidal energy conversion in a global hot spot: On the 3-D dynamics of baroclinic tides at the Celtic Sea shelf break. J. Geophys. Res. Oceans, 119, 32493265, doi:10.1002/2013JC009708.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vlasenko, V., N. Stashchuk, M. E. Inall, M. Porter, and D. Aleynik, 2016: Focusing of baroclinic tidal energy in a canyon. J. Geophys. Res. Oceans, 121, 28242840, doi:10.1002/2015JC011314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, I., 1987: Scattering of coastally trapped waves by changes in continental shelf width. J. Phys. Oceanogr., 17, 928937, doi:10.1175/1520-0485(1987)017<0928:SOCTWB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilkin, J. L., and D. C. Chapman, 1987: Scattering of continental shelf waves at a discontinuity in shelf width. J. Phys. Oceanogr., 17, 713724, doi:10.1175/1520-0485(1987)017<0713:SOCSWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yankovsky, A. E., and D. C. Chapman, 1996: Scattering of shelf waves by a spatially varying mean current. J. Geophys. Res., 101, 34793487, doi:10.1029/95JC02991.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, T., and A. E. Yankovsky, 2016: On the nature of cross-isobath energy fluxes in topographically modified barotropic semidiurnal Kelvin waves. J. Geophys. Res. Oceans, 121, 30583074, doi:10.1002/2015JC011617.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 327 72 6
PDF Downloads 190 31 2