Seasonal Overturning of the Labrador Sea as Observed by Argo Floats

James Holte Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by James Holte in
Current site
Google Scholar
PubMed
Close
and
Fiamma Straneo Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Fiamma Straneo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Argo floats are used to investigate Labrador Sea overturning and its variability on seasonal time scales. This is the first application of Argo floats to estimate overturning in a deep-water formation region in the North Atlantic. Unlike hydrographic measurements, which are typically confined to the summer season, floats offer the advantage of collecting data in all seasons. Seasonal composite potential density and absolute geostrophic velocity sections across the mouth of the Labrador Sea assembled from float profiles and trajectories at 1000 m are used to calculate the horizontal and overturning circulations. The overturning exhibits a pronounced seasonal cycle; in depth space the overturning doubles throughout the course of the year, and in density space it triples. The largest overturning [1.2 Sv (1 Sv ≡ 106 m3 s−1) in depth space and 3.9 Sv in density space] occurs in spring and corresponds to the outflow of recently formed Labrador Sea Water. The overturning decreases through summer and reaches a minimum in winter (0.6 Sv in depth space and 1.2 Sv in density space). The robustness of the Argo seasonal overturning is supported by a comparison to an overturning estimate based on hydrographic data from the AR7W line.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: James Holte, jholte@whoi.edu

Abstract

Argo floats are used to investigate Labrador Sea overturning and its variability on seasonal time scales. This is the first application of Argo floats to estimate overturning in a deep-water formation region in the North Atlantic. Unlike hydrographic measurements, which are typically confined to the summer season, floats offer the advantage of collecting data in all seasons. Seasonal composite potential density and absolute geostrophic velocity sections across the mouth of the Labrador Sea assembled from float profiles and trajectories at 1000 m are used to calculate the horizontal and overturning circulations. The overturning exhibits a pronounced seasonal cycle; in depth space the overturning doubles throughout the course of the year, and in density space it triples. The largest overturning [1.2 Sv (1 Sv ≡ 106 m3 s−1) in depth space and 3.9 Sv in density space] occurs in spring and corresponds to the outflow of recently formed Labrador Sea Water. The overturning decreases through summer and reaches a minimum in winter (0.6 Sv in depth space and 1.2 Sv in density space). The robustness of the Argo seasonal overturning is supported by a comparison to an overturning estimate based on hydrographic data from the AR7W line.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: James Holte, jholte@whoi.edu
Save
  • Baringer, M. O., and S. L. Garzoli, 2007: Meridional heat transport determined with expendable bathythermographs—Part I: Error estimates from model and hydrographic data. Deep-Sea Res., 54, 13901401, doi:10.1016/j.dsr.2007.03.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biastoch, A., C. W. Böning, J. Getzlaff, J.-M. Molines, and G. Madec, 2008: Causes of interannual–decadal variability in the meridional overturning circulation of the midlatitude North Atlantic Ocean. J. Climate, 21, 65996615, doi:10.1175/2008JCLI2404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bingham, R. J., C. W. Hughes, V. Roussenov, and R. G. Williams, 2007: Meridional coherence of the North Atlantic meridional overturning circulation. Geophys. Res. Lett., 34, L23606, doi:10.1029/2007GL031731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Böning, C. W., F. O. Bryan, W. R. Holland, and R. Döscher, 1996: Deep-water formation and meridional overturning in a high-resolution model of the North Atlantic. J. Phys. Oceanogr., 26, 11421164, doi:10.1175/1520-0485(1996)026<1142:DWFAMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Böning, C. W., M. Rhein, J. Dengg, and C. Dorow, 2003: Modeling CFC inventories and formation rates of Labrador Sea Water. Geophys. Res. Lett., 30, 1050, doi:10.1029/2002GL014855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandt, P., A. Funk, L. Czeschel, C. Eden, and C. W. Böning, 2007: Ventilation and transformation of Labrador Sea Water and its rapid export in the deep Labrador Current. J. Phys. Oceanogr., 37, 946961, doi:10.1175/JPO3044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chidichimo, M., T. Kanzow, S. Cunningham, W. E. Johns, and J. Marotzke, 2010: The contribution of eastern-boundary density variations to the Atlantic meridional overturning circulation at 26.5°N. Ocean Sci., 6, 475490, doi:10.5194/os-6-475-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, R. A., and J.-C. Gascard, 1983: The formation of Labrador Sea Water. Part I: Large-scale processes. J. Phys. Oceanogr., 13, 17641778, doi:10.1175/1520-0485(1983)013<1764:TFOLSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunningham, S. A., and R. Marsh, 2010: Observing and modeling changes in the Atlantic MOC. Wiley Interdiscip. Rev.: Climate Change, 1, 180191, doi:10.1002/wcc.22.

    • Search Google Scholar
    • Export Citation
  • Cunningham, S. A., and Coauthors, 2007: Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science, 317, 935938, doi:10.1126/science.1141304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuny, J., P. B. Rhines, P. P. Niiler, and S. Bacon, 2002: Labrador Sea boundary currents and the fate of the Irminger Sea water. J. Phys. Oceanogr., 32, 627647, doi:10.1175/1520-0485(2002)032<0627:LSBCAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daniault, N., H. Mercier, and P. Lherminier, 2011: The 1992–2009 transport variability of the East Greenland-Irminger Current at 60°N. Geophys. Res. Lett., 38, L07601, doi:10.1029/2011GL046863.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T., S. Manabe, and R. J. Stouffer, 1993: Interdecadal variations of the thermohaline circulation in a coupled ocean–atmosphere model. J. Climate, 6, 19932011, doi:10.1175/1520-0442(1993)006<1993:IVOTTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deshayes, J. F., F. Straneo, and M. A. Spall, 2009: Mechanisms of variability in a convective basin. J. Mar. Res., 67, 273303, doi:10.1357/002224009789954757.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickson, R. R., and J. Brown, 1994: The production of North Atlantic Deep Water: Sources, rates, and pathways. J. Geophys. Res., 99, 12 31912 341, doi:10.1029/94JC00530.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fanning, A. F., and A. J. Weaver, 1997: A horizontal resolution and parameter sensitivity study of heat transport in an idealized coupled climate model. J. Climate, 10, 24692478, doi:10.1175/1520-0442(1997)010<2469:AHRAPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hakkinen, S., and P. B. Rhines, 2009: Shifting surface currents in the northern North Atlantic Ocean. J. Geophys. Res., 114, C04005, doi:10.1029/2008JC004883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, M. M., D. J. Torres, and I. Yashayaev, 2013: Absolute velocity along the AR7W section in the Labrador Sea. Deep-Sea Res., 72, 7287, doi:10.1016/j.dsr.2012.11.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, G., and C. L. Tang, 1999: Velocity and transport of the Labrador Current determined from altimetric, hydrographic, and wind data. J. Geophys. Res., 104, 18 04718 057, doi:10.1029/1999JC900145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hernández-Guerra, A., T. M. Joyce, E. Fraile-Nuez, and P. Vélez-Belchí, 2010: Using Argo data to investigate the meridional overturning circulation in the North Atlantic. Deep-Sea Res., 57, 2936, doi:10.1016/j.dsr.2009.10.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IOC, SCOR, and IAPSO, 2010: The International Thermodynamic Equation of Seawater—2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides 56, 220 pp., http://www.teos-10.org/pubs/TEOS-10_Manual.pdf.

  • Kanzow, T., and Coauthors, 2010: Seasonal variability of the Atlantic meridional overturning circulation at 26.5°N. J. Climate, 23, 56785698, doi:10.1175/2010JCLI3389.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavender, K. L., R. E. Davis, and W. B. Owens, 2000: Mid-depth recirculation observed in the interior Labrador and Irminger Seas by direct velocity measurements. Nature, 407, 6669, doi:10.1038/35024048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lazier, J., 1980: Oceanographic conditions at Ocean Weather Ship Bravo, 1964–1974. Atmos.–Ocean, 18, 227238, doi:10.1080/07055900.1980.9649089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lazier, J., R. Hendry, A. Clarke, I. Yashayaev, and P. Rhines, 2002: Convection and restratification in the Labrador Sea, 1990–2000. Deep-Sea Res., 49, 18191835, doi:10.1016/S0967-0637(02)00064-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebedev, K., H. Yoshinari, N. Maximenko, and P. Hacker, 2007: YoMaHa’07: Velocity data assessed from trajectories of Argo floats at parking level and at the sea surface. IPRC Tech. Note 4, 16 pp., http://apdrc.soest.hawaii.edu/projects/yomaha/yomaha07/YoMaHa070612.pdf.

  • Lozier, M. S., 2010: Deconstructing the conveyor belt. Science, 328, 15071511, doi:10.1126/science.1189250.

  • Lozier, M. S., 2012: Overturning in the North Atlantic. Annu. Rev. Mar. Sci., 4, 291315, doi:10.1146/annurev-marine-120710-100740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsh, R., 2000: Recent variability of the North Atlantic thermohaline circulation inferred from surface heat and freshwater fluxes. J. Climate, 13, 32393260, doi:10.1175/1520-0442(2000)013<3239:RVOTNA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., and F. Schott, 1999: Open-ocean convection: Observations, theory, and models. Rev. Geophys., 37, 164, doi:10.1029/98RG02739.

  • Mauritzen, C., 1996: Production of dense overflow waters feeding the North Atlantic across the Greenland-Scotland Ridge. Part 1: Evidence for a revised circulation scheme. Deep-Sea Res., 43, 769806, doi:10.1016/0967-0637(96)00037-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mauritzen, C., and S. Häkkinen, 1999: On the relationship between dense water formation and the “meridional overturning cell” in the North Atlantic Ocean. Deep-Sea Res., 46, 877894, doi:10.1016/S0967-0637(98)00094-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., D. R. Jackett, F. J. Millero, R. Pawlowicz, and P. M. Barker, 2012: A global algorithm for estimating Absolute Salinity. Ocean Sci., 8, 11231134, doi:10.5194/os-8-1123-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meinen, C. S., D. R. Watts, and R. A. Clarke, 2000: Absolutely referenced geostrophic velocity and transport on a section across the North Atlantic Current. Deep-Sea Res., 47, 309322, doi:10.1016/S0967-0637(99)00061-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ollitrault, M., and J.-P. Rannou, 2013: ANDRO: An Argo-based deep displacement dataset. J. Atmos. Oceanic Technol., 30, 759788, doi:10.1175/JTECH-D-12-00073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palter, J. B., C.-A. Caron, K. L. Law, J. K. Willis, D. S. Trossman, I. M. Yashayaev, and D. Gilbert, 2016: Variability of the directly observed, middepth subpolar North Atlantic circulation. Geophys. Res. Lett., 43, 27002708, doi:10.1002/2015GL067235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., and M. A. Spall, 2007: Impact of Labrador Sea convection on the North Atlantic meridional overturning circulation. J. Phys. Oceanogr., 37, 22072227, doi:10.1175/JPO3178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., D. J. Torres, and R. A. Clarke, 2002: Hydrography of the Labrador Sea during active convection. J. Phys. Oceanogr., 32, 428457, doi:10.1175/1520-0485(2002)032<0428:HOTLSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quadfasel, D., and R. Käse, 2007: Present-day manifestation of the Nordic Seas overflows. Ocean Circulation: Mechanisms and Impacts—Past and Future Changes of Meridional Overturning, Geophys. Monogr., Vol. 173, Amer. Geophys. Union, 75–89, doi:10.1029/173GM07.

    • Crossref
    • Export Citation
  • Rayner, D., and Coauthors, 2011: Monitoring the Atlantic meridional overturning circulation. Deep-Sea Res. II, 58, 17441753, doi:10.1016/j.dsr2.2010.10.056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reid, J. L., 1994: On the total geostrophic circulation of the North Atlantic Ocean: Flow patterns, tracers, and transports. Prog. Oceanogr., 33, 192, doi:10.1016/0079-6611(94)90014-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhein, M., and Coauthors, 2002: Labrador Sea Water: Pathways, CFC inventory, and formation rates. J. Phys. Oceanogr., 32, 648665, doi:10.1175/1520-0485(2002)032<0648:LSWPCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhein, M., and Coauthors, 2011: Deep water formation, the subpolar gyre, and the meridional overturning circulation in the subpolar North Atlantic. Deep-Sea Res. II, 58, 18191832, doi:10.1016/j.dsr2.2010.10.061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rykova, T., F. Straneo, and A. S. Bower, 2015: Seasonal and interannual variability of the West Greenland Current system in the Labrador Sea in 1993–2008. J. Geophys. Res. Oceans, 120, 13181332, doi:10.1002/2014JC010386.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, F. A., J. Fischer, M. Dengler, and R. Zantopp, 2006: Variability of the deep western boundary current east of the Grand Banks. Geophys. Res. Lett., 33, L21S07, doi:10.1029/2006GL026563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Send, U., and J. Marshall, 1995: Integral effects of deep convection. J. Phys. Oceanogr., 25, 855872, doi:10.1175/1520-0485(1995)025<0855:IEODC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2004: Boundary currents and watermass transformation in marginal seas. J. Phys. Oceanogr., 34, 11971213, doi:10.1175/1520-0485(2004)034<1197:BCAWTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spall, M. A., and R. S. Pickart, 2003: Wind-driven recirculations and exchange in the Labrador and Irminger Seas. J. Phys. Oceanogr., 33, 18291845, doi:10.1175/2384.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stepanov, V. N., D. Iovino, S. Masina, A. Storto, and A. Cipollone, 2016: Observed and simulated variability of the Atlantic meridional overturning circulation at 41°N. J. Mar. Syst., 164, 4252, doi:10.1016/j.jmarsys.2016.08.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straneo, F., 2006: On the connection between dense water formation, overturning, and poleward heat transport in a convective basin. J. Phys. Oceanogr., 36, 18221840, doi:10.1175/JPO2932.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talley, L. D., J. L. Reid, and P. E. Robbins, 2003: Data-based meridional overturning streamfunctions for the global ocean. J. Climate, 16, 32133226, doi:10.1175/1520-0442(2003)016<3213:DMOSFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willis, J. K., 2010: Can in situ floats and satellite altimeters detect long-term changes in Atlantic Ocean overturning? Geophys. Res. Lett., 37, L06602, doi:10.1029/2010GL042372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2002: What is the thermohaline circulation? Science, 298, 11791181, doi:10.1126/science.1079329.

  • Xu, X., E. P. Chassignet, W. E. Johns, W. J. Schmitz, and E. J. Metzger, 2014: Intraseasonal to interannual variability of the Atlantic meridional overturning circulation from eddy-resolving simulations and observations. J. Geophys. Res. Oceans, 119, 51405159, doi:10.1002/2014JC009994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yashayaev, I., 2007: Hydrographic changes in the Labrador Sea, 1960–2005. Prog. Oceanogr., 73, 242276, doi:10.1016/j.pocean.2007.04.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yashayaev, I., and J. W. Loder, 2016: Recurrent replenishment of Labrador Sea Water and associated decadal-scale variability. J. Geophys. Res. Oceans, 121, 80958114, doi:10.1002/2016JC012046.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 377 106 7
PDF Downloads 286 70 2