Energetic Submesoscales Maintain Strong Mixed Layer Stratification during an Autumn Storm

Daniel B. Whitt National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Daniel B. Whitt in
Current site
Google Scholar
PubMed
Close
and
John R. Taylor Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom

Search for other papers by John R. Taylor in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Atmospheric storms are an important driver of changes in upper-ocean stratification and small-scale (1–100 m) turbulence. Yet, the modifying effects of submesoscale (0.1–10 km) motions in the ocean mixed layer on stratification and small-scale turbulence during a storm are not well understood. Here, large-eddy simulations are used to study the coupled response of submesoscale and small-scale turbulence to the passage of an idealized autumn storm, with a wind stress representative of a storm observed in the North Atlantic above the Porcupine Abyssal Plain. Because of a relatively shallow mixed layer and a strong downfront wind, existing scaling theory predicts that submesoscales should be unable to restratify the mixed layer during the storm. In contrast, the simulations reveal a persistent and strong mean stratification in the mixed layer both during and after the storm. In addition, the mean dissipation rate remains elevated throughout the mixed layer during the storm, despite the strong mean stratification. These results are attributed to strong spatial variability in stratification and small-scale turbulence at the submesoscale and have important implications for sampling and modeling submesoscales and their effects on stratification and turbulence in the upper ocean.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Daniel B. Whitt, dwhitt@ucar.edu

Abstract

Atmospheric storms are an important driver of changes in upper-ocean stratification and small-scale (1–100 m) turbulence. Yet, the modifying effects of submesoscale (0.1–10 km) motions in the ocean mixed layer on stratification and small-scale turbulence during a storm are not well understood. Here, large-eddy simulations are used to study the coupled response of submesoscale and small-scale turbulence to the passage of an idealized autumn storm, with a wind stress representative of a storm observed in the North Atlantic above the Porcupine Abyssal Plain. Because of a relatively shallow mixed layer and a strong downfront wind, existing scaling theory predicts that submesoscales should be unable to restratify the mixed layer during the storm. In contrast, the simulations reveal a persistent and strong mean stratification in the mixed layer both during and after the storm. In addition, the mean dissipation rate remains elevated throughout the mixed layer during the storm, despite the strong mean stratification. These results are attributed to strong spatial variability in stratification and small-scale turbulence at the submesoscale and have important implications for sampling and modeling submesoscales and their effects on stratification and turbulence in the upper ocean.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Daniel B. Whitt, dwhitt@ucar.edu
Save
  • Anderson, P. S., 2009: Measurement of Prandtl number as a function of Richardson number avoiding self-correlation. Bound.-Layer Meteor., 131, 345362, doi:10.1007/s10546-009-9376-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bachman, S. D., and J. R. Taylor, 2016: Numerical simulations of the equilibrium between eddy-induced restratification and vertical mixing. J. Phys. Oceanogr., 46, 919935, doi:10.1175/JPO-D-15-0110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., R. Ferrari, and B. Fox-Kemper, 2007: Mixed layer instabilities and restratification. J. Phys. Oceanogr., 37, 22282250, doi:10.1175/JPO3101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckingham, C. E., and Coauthors, 2016: Seasonality of submesoscale flows in the ocean surface boundary layer. Geophys. Res. Lett., 43, 21182126, doi:10.1002/2016GL068009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., G. Flierl, R. Ferrari, and B. Fox-Kemper, 2016: The role of mixed-layer instabilities in submesoscale turbulence. J. Fluid Mech., 788, 541, doi:10.1017/jfm.2015.700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008: Mesoscale to submesoscale transition in the California Current System. Part I: Flow structure, eddy flux, and observational tests. J. Phys. Oceanogr., 38, 2943, doi:10.1175/2007JPO3671.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E., C. Lee, L. Rainville, R. Harcourt, and L. Thomas, 2011: Enhanced turbulence and energy dissipation at ocean fronts. Science, 332, 318322, doi:10.1126/science.1201515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, R. E., R. DeSzoeke, D. Halpern, and P. Niiler, 1981: Variability in the upper ocean during MILE. Part I: The heat and momentum balances. Deep-Sea Res., 28A, 14271451, doi:10.1016/0198-0149(81)90091-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dohan, K., and R. E. Davis, 2011: Mixing in the transition layer during two storm events. J. Phys. Oceanogr., 41, 4266, doi:10.1175/2010JPO4253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forryan, A., A. C. Naveira Garabato, K. L. Polzin, and S. Waterman, 2015: Rapid injection of near-inertial shear into the stratified upper ocean at an Antarctic Circumpolar Current front. Geophys. Res. Lett., 42, 34313441, doi:10.1002/2015GL063494.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., R. Ferrari, and R. Hallberg, 2008: Parameterization of mixed layer eddies. Part I: Theory and diagnosis. J. Phys. Oceanogr., 38, 11451165, doi:10.1175/2007JPO3792.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haine, T. W. N., and J. Marshall, 1998: Gravitational, symmetric, and baroclinic instability of the ocean mixed layer. J. Phys. Oceanogr., 28, 634658, doi:10.1175/1520-0485(1998)028<0634:GSABIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamlington, P. E., L. P. VanRoekel, B. Fox-Kemper, K. Julien, and G. Chini, 2014: Langmuir–submesoscale interactions: Descriptive analysis of multiscale frontal spindown simulations. J. Phys. Oceanogr., 44, 22492272, doi:10.1175/JPO-D-13-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B., 1974: The role of potential vorticity in symmetric stability and instability. Quart. J. Roy. Meteor. Soc., 100, 480482, doi:10.1002/qj.49710042520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaltenbach, H.-J., T. Gerz, and U. Schumann, 1994: Large-eddy simulation of homogeneous turbulence and diffusion in stably stratified shear flow. J. Fluid Mech., 280, 140, doi:10.1017/S0022112094002831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P., and G. Lapeyre, 2009: The oceanic vertical pump induced by mesoscale and submesoscale turbulence. Annu. Rev. Mar. Sci., 1, 351375, doi:10.1146/annurev.marine.010908.163704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., P. Klein, and B. L. Hua, 2006: Oceanic restratification forced by surface frontogenesis. J. Phys. Oceanogr., 36, 15771590, doi:10.1175/JPO2923.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., and G. Crawford, 1995: Observations and simulations of upper-ocean response to wind events during the ocean storms experiment. J. Phys. Oceanogr., 25, 28312852, doi:10.1175/1520-0485(1995)025<2831:OASOUO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and P. P. Niiler, 1986: Upper ocean thermal response to strong autumnal forcing of the Northeast Pacific. J. Phys. Oceanogr., 16, 15241550, doi:10.1175/1520-0485(1986)016<1524:UOTRTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lévy, M., P. Klein, and A.-M. Treguier, 2001: Impact of sub-mesoscale physics on production and subduction of phytoplankton in an oligotrophic regime. J. Mar. Res., 59, 535565, doi:10.1357/002224001762842181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., and A. Tandon, 2006: An analysis of mechanisms for submesoscale vertical motion at ocean fronts. Ocean Modell., 14, 241256, doi:10.1016/j.ocemod.2006.05.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., A. Tandon, and R. Ferrari, 2010: Rapid changes in mixed layer stratification driven by submesoscale instabilities and winds. J. Geophys. Res., 115, C03017, doi:10.1029/2008JC005203.

    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., E. D’Asaro, C. Lee, and M. J. Perry, 2012: Eddy-driven stratification initiates North Atlantic spring phytoplankton blooms. Science, 337, 5458, doi:10.1126/science.1218740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J., 2016: Submesoscale currents in the ocean. Proc. Roy. Soc. London, A472, 20160117, doi:10.1098/rspa.2016.0117.

  • Munk, W., L. Armi, K. Fischer, and F. Zachariasen, 2000: Spirals on the sea. Proc. Roy. Soc. London, A456, 12171280, doi:10.1098/rspa.2000.0560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., and E. B. Kraus, 1977: One-dimensional models of the upper-ocean. Modeling and Prediction of the Upper Layers of the Ocean, E. B. Kraus, Ed., Pergamon Press, 143–172.

  • Özgökmen, T. M., A. C. Poje, P. F. Fischer, and A. C. Haza, 2011: Large eddy simulations of mixed layer instabilities and sampling strategies. Ocean Modell., 39, 311331, doi:10.1016/j.ocemod.2011.05.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., P. B. Rhines, and R. Thompson, 1972: The deepening of the wind-mixed layer. Geophys. Fluid Dyn., 4, 381404, doi:10.1080/03091927208236105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., C. N. K. Mooers, and J. C. Van Leer, 1978: Observation and simulation of storm-induced mixed-layer deepening. J. Phys. Oceanogr., 8, 582599, doi:10.1175/1520-0485(1978)008<0582:OASOSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rumyantseva, A., N. Lucas, T. Rippeth, A. Martin, S. C. Painter, T. J. Boyd, and S. Henson, 2015: Ocean nutrient pathways associated with the passage of a storm. Global Biogeochem. Cycles, 29, 11791189, doi:10.1002/2015GB005097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shcherbina, A. Y., E. A. D’Asaro, C. M. Lee, J. M. Klymak, M. J. Molemaker, and J. C. McWilliams, 2013: Statistics of vertical vorticity, divergence, and strain in a developed submesoscale turbulence field. Geophys. Res. Lett., 40, 47064711, doi:10.1002/grl.50919.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E., and R. Samelson, 2012: Baroclinic frontal instabilities and turbulent mixing in the surface boundary layer. Part I: Unforced simulations. J. Phys. Oceanogr., 42, 17011715, doi:10.1175/JPO-D-10-05016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E., J. Duncombe, and R. Samelson, 2017: Baroclinic frontal instabilities and turbulent mixing in the surface boundary layer. Part II: Forced simulations. J. Phys. Oceanogr.,doi:10.1175/JPO-D-16-0179.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, K. M., P. E. Hamlington, and B. Fox-Kemper, 2016: Effects of submesoscale turbulence on ocean tracers. J. Geophys. Res. Oceans, 121, 908933, doi:10.1002/2015JC011089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stamper, M., and J. Taylor, 2016: The transition from symmetric to baroclinic instability in the Eady model. Ocean Dyn., 67, 6580, doi:10.1007/s10236-016-1011-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1966: On non-geostrophic baroclinic stability. J. Atmos. Sci., 23, 390400, doi:10.1175/1520-0469(1966)023<0390:ONGBS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., 2008: Numerical simulations of the stratified oceanic bottom boundary layer. Ph.D. dissertation, University of California, San Diego, 229 pp.

  • Taylor, J. R., 2016: Turbulent mixing, restratification, and phytoplankton growth at a submesoscale eddy. Geophys. Res. Lett., 43, 57845792, doi:10.1002/2016GL069106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., and R. Ferrari, 2010: Buoyancy and wind-driven convection at mixed layer density fronts. J. Phys. Oceanogr., 40, 12221242, doi:10.1175/2010JPO4365.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., A. Tandon, and A. Mahadevan, 2008: Submesoscale processes and dynamics. Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 17–37, doi:10.1029/177GM04.

    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., J. M. Taylor, R. Ferrari, and T. M. Joyce, 2013: Symmetric instability in the Gulf Stream. Deep-Sea Res. II, 91, 96110, doi:10.1016/j.dsr2.2013.02.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., J. M. Taylor, E. A. D’Asaro, C. M. Lee, J. M. Klymak, and A. Shcherbina, 2016: Symmetric instability, inertial oscillations, and turbulence at the Gulf Stream front. J. Phys. Oceanogr., 46, 197217, doi:10.1175/JPO-D-15-0008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., A. Lazar, C. Buckingham, A. C. Naveira-Garabato, G. M. Damerell, and K. J. Heywood, 2016: Open-ocean submesoscale motions: A full seasonal cycle of mixed layer instabilities from gliders. J. Phys. Oceanogr., 46, 12851307, doi:10.1175/JPO-D-15-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomsen, S., T. Kanzow, F. Colas, V. Echevin, G. Krahmann, and A. Engel, 2016: Do submesoscale frontal processes ventilate the oxygen minimum zone off Peru? Geophys. Res. Lett., 43, 81338142, doi:10.1002/2016GL070548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitt, D. B., 2017: Data for “Energetic submesoscales maintain strong mixed layer stratification during an autumn storm.” Figshare, accessed 26 September 2017, doi:10.6084/m9.figshare.c.3816175.v1.

    • Crossref
    • Export Citation
  • Whitt, D. B., J. R. Taylor, and M. Lévy, 2017: Synoptic-to-planetary scale wind variability enhances phytoplankton biomass at ocean fronts. J. Geophys. Res. Oceans, 122, 46024633, doi:10.1002/2016JC011899.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 561 237 10
PDF Downloads 410 98 4