• Alford, M. H., 2003: Improved global maps and 54-years history of wind-work on ocean inertial motions. Geophys. Res. Lett., 30, 1424, doi:10.1029/2002GL016614.

    • Search Google Scholar
    • Export Citation
  • Blender, R., and M. Schubert, 2000: Cyclone tracking in different spatial and temporal resolutions. Mon. Wea. Rev., 128, 377384, doi:10.1175/1520-0493(2000)128<0377:CTIDSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danioux, E., P. Klein, and P. Riviére, 2008: Propagation of wind energy into the deep ocean through a fully turbulent mesoscale eddy field. J. Phys. Oceanogr., 38, 22242241, doi:10.1175/2008JPO3821.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 1985: The energy flux from the wind to near-inertial motions in the surface mixed layer. J. Phys. Oceanogr., 15, 10431059, doi:10.1175/1520-0485(1985)015<1043:TEFFTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 1989: The decay of wind-forced mixed layer inertial oscillations due to the β effect. J. Geophys. Res., 94, 20452056, doi:10.1029/JC094iC02p02045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 1995: Upper-ocean inertial currents forced by a strong storm. Part II: Modeling. J. Phys. Oceanogr., 25, 29372952, doi:10.1175/1520-0485(1995)025<2937:UOICFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dippe, T., X. Zhai, R. J. Greatbatch, and W. Rath, 2015: Interannual variability of wind power input to near-inertial motions in the North Atlantic. Ocean Dyn., 65, 859875, doi:10.1007/s10236-015-0834-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duhaut, T. H., and D. N. Straub, 2006: Wind stress dependence on ocean surface velocity: Implications for mechanical energy input to ocean circulation. J. Phys. Oceanogr., 36, 202211, doi:10.1175/JPO2842.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Furuichi, N., T. Hibiya, and Y. Niwa, 2008: Model-predicted distribution of wind-induced internal wave energy in the world’s oceans. J. Geophys. Res., 113, C09034, doi:10.1029/2008JC004768.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., 2001: What is the “near-inertial” band and why is it different from the rest of the internal wave spectrum? J. Phys. Oceanogr., 31, 962971, doi:10.1175/1520-0485(2001)031<0962:WITNIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1984: On the behavior of internal waves in the wakes of storms. J. Phys. Oceanogr., 14, 11291151, doi:10.1175/1520-0485(1984)014<1129:OTBOIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, W. D., and O. S. Madsen, 1986: The continental-shelf bottom boundary layer. Annu. Rev. Fluid Mech., 18, 265305, doi:10.1146/annurev.fl.18.010186.001405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1994: A general method for tracking analysis and its application to meteorological data. Mon. Wea. Rev., 122, 25732586, doi:10.1175/1520-0493(1994)122<2573:AGMFTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, J., Y. Lu, and W. Perrie, 2005: Estimating the energy flux from the wind to ocean inertial motions: The sensitivity to surface wind fields. Geophys. Res. Lett., 32, L15610, doi:10.1029/2005GL023289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jochum, M., B. P. Briegleb, G. Danabasoglu, W. G. Large, N. J. Norton, S. R. Jayne, and F. O. Bryan, 2013: The impact of oceanic near-inertial waves on climate. J. Climate, 26, 28332844, doi:10.1175/JCLI-D-12-00181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kilbourne, B. F., and J. B. Girton, 2015: Quantifying high-frequency wind energy flux into near-inertial motions in the southeast Pacific. J. Phys. Oceanogr., 45, 369386, doi:10.1175/JPO-D-14-0076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., 1985: Near-inertial propagation in geostrophic shear. J. Phys. Oceanogr., 15, 544565, doi:10.1175/1520-0485(1985)015<0544:NIWPIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niiler, P., and J. D. Paduan, 1995: Wind-driven motions in the northeast Pacific as measured by Lagrangian drifters. J. Phys. Oceanogr., 25, 28192830, doi:10.1175/1520-0485(1995)025<2819:WDMITN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., and R. C. J. Millard, 1970: Comparison between observed and simulated wind-generated inertial oscillations. Deep-Sea Res. Oceanogr. Abstr., 17, 813821, doi:10.1016/0011-7471(70)90043-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rath, W., R. J. Greatbatch, and X. Zhai, 2013: Reduction of near-inertial energy through the dependence of wind stress on the ocean-surface velocity. J. Geophys. Res. Oceans, 118, 27612773, doi:10.1002/jgrc.20198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rath, W., R. J. Greatbatch, and X. Zhai, 2014: On the spatial and temporal distribution of near-inertial energy in the Southern Ocean. J. Geophys. Res. Oceans, 119, 359376, doi:10.1002/2013JC009246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rimac, A., J. S. von Storch, C. Eden, and H. Haak, 2013: The influence of high-resolution wind stress field on the power input to near-inertial motions in the ocean. Geophys. Res. Lett., 40, 48824886, doi:10.1002/grl.50929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and T. Hibiya, 2002: Global estimates of the wind-induced energy flux to inertial motions in the surface mixed layer. Geophys. Res. Lett., 29, 1239, doi:10.1029/2001GL014422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weller, R. A., 1982: The relationship of near-inertial motions observed in the mixed layer during the JASIN (1978) experiment to the local wind stress and to the quasi-geostrophic flow field. J. Phys. Oceanogr., 12, 11221136, doi:10.1175/1520-0485(1982)012<1122:TRONIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Y., X. Zhai, and Z. Wang, 2016: Impact of synoptic atmospheric forcing on the mean ocean circulation. J. Climate, 29, 57095724, doi:10.1175/JCLI-D-15-0819.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314, doi:10.1146/annurev.fluid.36.050802.122121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, X., 2013: On the wind mechanical forcing of the ocean general circulation. J. Geophys. Res. Oceans, 118, 65616577, doi:10.1002/2013JC009086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, X., 2015: Latitudinal dependence of wind-induced near-inertial energy. J. Phys. Oceanogr., 45, 30253032, doi:10.1175/JPO-D-15-0166.1.

  • Zhai, X., R. J. Greatbatch, and J. Zhao, 2005: Enhanced vertical propagation of storm-induced near-inertial energy in an eddying ocean channel model. Geophys. Res. Lett., 32, L18602, doi:10.1029/2005GL023643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, X., H. L. Johnson, D. P. Marshall, and C. Wunsch, 2012: On the wind power input to the ocean general circulation. J. Phys. Oceanogr., 42, 13571365, doi:10.1175/JPO-D-12-09.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 238 144 25
PDF Downloads 168 70 12

Dependence of Energy Flux from the Wind to Surface Inertial Currents on the Scale of Atmospheric Motions

View More View Less
  • 1 Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
Restricted access

Abstract

Atmospheric features such as translating cold fronts and small lows with horizontal scales of about 100 km are traditionally thought to be most important in exciting near-inertial motions in the ocean. However, recent studies suggest that a significant fraction of energy flux from the wind to surface inertial currents may be supplied by atmospheric systems of larger scales. Here, the dependence of this energy flux on the scale of atmospheric motions is investigated using a high-resolution atmosphere reanalysis product and a slab model. It is found that mesoscale atmospheric systems with scales less than 1000 km are responsible for almost all the energy flux from the wind to near-inertial motions in the midlatitude North Atlantic and North Pacific. Transient atmospheric features with scales of ~100 km contribute significantly to this wind energy flux, but they are not as dominant as traditionally thought. Owing to the nonlinear nature of the stress law, energy flux from mesoscale atmospheric systems depends critically on the existence of the background, larger-scale wind field. Finally, accounting for relative motions in the stress calculation reduces the net wind energy flux to near-inertial motions by about one-fifth. Mesoscale atmospheric systems are found to be responsible for the majority of this relative wind damping effect.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaoming Zhai, xiaoming.zhai@uea.ac.uk

Abstract

Atmospheric features such as translating cold fronts and small lows with horizontal scales of about 100 km are traditionally thought to be most important in exciting near-inertial motions in the ocean. However, recent studies suggest that a significant fraction of energy flux from the wind to surface inertial currents may be supplied by atmospheric systems of larger scales. Here, the dependence of this energy flux on the scale of atmospheric motions is investigated using a high-resolution atmosphere reanalysis product and a slab model. It is found that mesoscale atmospheric systems with scales less than 1000 km are responsible for almost all the energy flux from the wind to near-inertial motions in the midlatitude North Atlantic and North Pacific. Transient atmospheric features with scales of ~100 km contribute significantly to this wind energy flux, but they are not as dominant as traditionally thought. Owing to the nonlinear nature of the stress law, energy flux from mesoscale atmospheric systems depends critically on the existence of the background, larger-scale wind field. Finally, accounting for relative motions in the stress calculation reduces the net wind energy flux to near-inertial motions by about one-fifth. Mesoscale atmospheric systems are found to be responsible for the majority of this relative wind damping effect.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaoming Zhai, xiaoming.zhai@uea.ac.uk
Save