• Bass, S. J., J. N. Aldridge, I. N. McCave, and C. E. Vincent, 2002: Phase relationships between fine sediment suspensions and tidal currents in coastal seas. J. Geophys. Res., 107, 3146, doi:10.1029/2001JC001269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, C., Z. Y. Song, Y. G. Wang, and J. S. Zhang, 2013: Parameterized expressions for an improved Rouse equation. Int. J. Sediment Res., 28, 523534, doi:10.1016/S1001-6279(14)60010-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, C., H. M. Huang, C. Y. Liu, and W. M. Jiang, 2016: Challenges to the representation of suspended sediment transfer using a depth-averaged flux. Earth Surf. Processes Landforms, 41, 13371357, doi:10.1002/esp.3903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Claudin, P., F. Charru, and B. Andreotti, 2011: Transport relaxation time and length scales in turbulent suspensions. J. Fluid Mech., 671, 491506, doi:10.1017/S0022112010005823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craven, M., I. Allison, H. A. Fricker, and R. Warner, 2009: Properties of a marine ice layer under the Amery Ice Shelf, East Antarctica. J. Glaciol., 55, 717728, doi:10.3189/002214309789470941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, J. G., and S. K. Nanda, 2006: Two-dimensional depth-integrated model simulation of suspended sediment concentration distribution in a groyne field. J. Hydrol., 327, 426437, doi:10.1016/j.jhydrol.2005.11.055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, J. G., and P. Y. Julien, 2010: Numerical simulation of meandering evolution. J. Hydrol., 391, 3446, doi:10.1016/j.jhydrol.2010.07.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dyer, K. R., and R. L. Soulsby, 1988: Sand transport on the continental shelf. Annu. Rev. Fluid Mech., 20, 295324, doi:10.1146/annurev.fl.20.010188.001455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foldvik, A., and T. Kvinge, 1974: Conditional instability of sea water at freezing point. Deep-Sea Res., 21, 169174, https://doi.org/10.1016/0011-7471(74)90056-4.

    • Search Google Scholar
    • Export Citation
  • Gade, H. G., 1979: Melting of ice in sea water: A primitive model with application to the Antarctic ice shelf and icebergs. J. Phys. Oceanogr., 9, 189198, doi:https://doi.org/10.1175/1520-0485(1979)009<0189:MOIISW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galton-Fenzi, B. K., 2009: Modelling ice-shelf/ocean interaction. Ph.D. thesis, University of Tasmania, 151 pp.

  • Galton-Fenzi, B. K., J. R. Hunter, R. Coleman, S. J. Marsland, and R. C. Warner, 2012: Modeling the basal melting and marine ice accretion of the Amery Ice Shelf. J. Geophys. Res., 117, C09031, doi:10.1029/2012JC008214.

    • Search Google Scholar
    • Export Citation
  • Garabato, A. C. N., and Coauthors, 2017: Vigorous lateral export of the meltwater outflow from beneath an Antarctic ice shelf. Nature, 542, 219222, doi:10.1038/nature20825.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gladish, C. V., D. M. Holland, P. R. Holland, and S. F. Price, 2012: Ice-shelf basal channels in a coupled ice/ocean model. J. Glaciol., 58, 12271244, doi:10.3189/2012JoG12J003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herraiz-Borreguero, L., I. Allison, M. Craven, K. W. Nicholls, and M. A. Rosenberg, 2013: Ice shelf/ocean interactions under the Amery Ice Shelf: Seasonal variability and its effect on marine ice formation. J. Geophys. Res. Oceans, 118, 71177131, doi:10.1002/2013JC009158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hjelmfelt, A. T., and C. W. Lenau, 1970: Nonequilibrium transport of suspended sediment. J. Hydraul. Div. Amer. Soc. Civ. Eng., 96, 15671586.

    • Search Google Scholar
    • Export Citation
  • Holland, D. M., and A. Jenkins, 1999: Modeling thermodynamic ice–ocean interactions at the base of an ice shelf. J. Phys. Oceanogr., 29, 17871800, doi:10.1175/1520-0485(1999)029<1787:MTIOIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, P. R., and D. L. Feltham, 2005: Frazil dynamics and precipitation in a water column with depth-dependent supercooling. J. Fluid Mech., 530, 101124, doi:10.1017/S002211200400285X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, P. R., and D. L. Feltham, 2006: The effects of rotation and ice shelf topography on frazil-laden ice shelf water plumes. J. Phys. Oceanogr., 36, 23122327, doi:10.1175/JPO2970.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, P. R., D. L. Feltham, and A. Jenkins, 2007: Ice shelf water plume flow beneath Filchner-Ronne Ice Shelf, Antarctica. J. Geophys. Res., 112, C05044, doi:10.1029/2006JC003915.

    • Search Google Scholar
    • Export Citation
  • Holland, P. R., H. F. J. Corr, D. G. Vaughan, A. Jenkins, and P. Skvarca, 2009: Marine ice in Larsen Ice Shelf. Geophys. Res. Lett., 36, L11604, doi:10.1029/2009GL038162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, K. G., P. J. Langhorne, G. H. Leonard, and C. L. Stevens, 2014: Extension of an ice shelf water plume model beneath sea ice with application in McMurdo Sound, Antarctica. J. Geophys. Res. Oceans, 119, 86628687, doi:10.1002/2013JC009411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jansen, D., A. Luckman, B. Kulessa, P. R. Holland, and E. C. King, 2013: Marine ice formation in a suture zone on the Larsen C Ice Shelf and its influence on ice shelf dynamics. J. Geophys. Res. Earth Surf., 118, 16281640, doi:10.1002/jgrf.20120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenkins, A., 1991: A one-dimensional model of ice shelf-ocean interaction. J. Geophys. Res., 96, 20 67120 677, doi:10.1029/91JC01842.

  • Jenkins, A., 2016: A simple model of the ice shelf–ocean boundary layer and current. J. Phys. Oceanogr., 46, 17851803, doi:10.1175/JPO-D-15-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenkins, A., and A. Bombosch, 1995: Modelling the effects of frazil ice crystals on the dynamics and thermodynamics of ice shelf water plumes. J. Geophys. Res., 100, 69676981, doi:10.1029/94JC03227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jordan, J. R., S. Kimura, P. R. Holland, A. Jenkins, and M. D. Piggott, 2015: On the conditional frazil ice instability in seawater. J. Phys. Oceanogr., 45, 11211138, doi:10.1175/JPO-D-14-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joughin, I., and L. Padman, 2003: Melting and freezing beneath Filchner-Ronne Ice Shelf, Antarctica. Geophys. Res. Lett., 30, 1477, doi:10.1029/2003GL016941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kämpf, J., 2009: Ocean Modelling for Beginners. Springer, 175 pp.

    • Crossref
    • Export Citation
  • Kulessa, B., D. Jansen, A. J. Luckman, E. C. King, and P. R. Sammonds, 2014: Marine ice regulates the future stability of a large Antarctic ice shelf. Nat. Commun., 5, 3707, doi:10.1038/ncomms4707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langhorne, P. J., and Coauthors, 2015: Observed platelet ice distributions in Antarctic sea ice: An index for ocean-ice shelf heat flux. Geophys. Res. Lett., 42, 54425451, doi:10.1002/2015GL064508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCave, I. N., and S. A. Swift, 1976: A physical model for the rate of deposition of fine-grained sediments in the deep sea. Geol. Soc. Amer. Bull., 87, 541546, doi:10.1130/0016-7606(1976)87<541:APMFTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakayama, Y., R. Timmermann, C. B. Rodehacke, M. Schröder, and H. H. Hellmer, 2014: Modeling the spreading of glacial meltwater from the Amundsen and Bellingshausen Seas. Geophys. Res. Lett., 41, 79427949, doi:10.1002/2014GL061600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, K. W., L. Padman, M. Schröder, R. A. Woodgate, A. Jenkins, and S. Østerhus, 2003: Water mass modification over the continental shelf north of Ronne Ice Shelf, Antarctica. J. Geophys. Res., 108, 3260, doi:10.1029/2002JC001713.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, K. W., S. Østerhus, K. Makinson, T. Gammelsrød, and E. Fahrbach, 2009: Ice-ocean processes over the continental shelf of the southern Weddell Sea, Antarctica: A review. Rev. Geophys., 47, RG3003, doi:10.1029/2007RG000250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Payne, A. J., P. R. Holland, A. P. Shepherd, I. C. Rutt, A. Jenkins, and I. Joughin, 2007: Numerical modeling of ocean-ice interactions under Pine Island Bay’s ice shelf. J. Geophys. Res., 112, C10019, doi:10.1029/2006JC003733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pritchard, H. D., S. R. M. Ligtenberg, H. A. Fricker, D. G. Vaughan, M. R. Van den Broeke, and L. Padman, 2012: Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature, 484, 502505, https://doi.org/10.1038/nature10968.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rignot, E., S. Jacobs, J. Mouginot, and B. Scheuchl, 2013: Ice-shelf melting around Antarctica. Science, 341, 266270, doi:10.1126/science.1235798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, N. J., M. J. M. Williams, C. L. Stevens, P. J. Langhorne, and T. G. Haskell, 2014: Evolution of a supercooled ice shelf water plume with an actively growing subice platelet matrix. J. Geophys. Res. Oceans, 119, 34253446, doi:10.1002/2013JC009399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, N. J., C. L. Stevens, and M. G. McPhee, 2017: Observations of amplified roughness from crystal accretion in the sub-ice ocean boundary layer. Geophys. Res. Lett., 44, 18141822, doi:10.1002/2016GL071491.

    • Search Google Scholar
    • Export Citation
  • Sandhäger, H., D. G. Vaughan, and A. Lambrecht, 2004: Meteoric, marine and total ice thickness maps of Filchner-Ronne-Schelfeis, Antarctica. Forum for Research into Ice Shelf Processes Proc. 17th Int. Workshop of the Forum for Research into Ice Shelf Processes, Cambridge, UK, Bjerknes Centre for Climate Research, 23–30.

  • Sergienko, O. V., 2013: Basal channels on ice shelves. J. Geophys. Res. Earth Surf., 118, 13421355, doi:10.1002/jgrf.20105.

  • Smedsrud, L. H., and A. Jenkins, 2004: Frazil ice formation in an ice shelf water plume. J. Geophys. Res., 109, C03025, doi:10.1029/2003JC001851.

    • Search Google Scholar
    • Export Citation
  • Williams, G. D., and Coauthors, 2016: The suppression of Antarctic bottom water formation by melting ice shelves in Prydz Bay. Nat. Commun., 7, 12577, doi:10.1038/ncomms12577.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, F., J. F. Tao, Z. Zhou, G. Coco, and C. K. Zhang, 2016: Mechanisms underlying the regional morphological differences between the northern and southern radial sand ridges along the Jiangsu Coast, China. Mar. Geol., 371, 117, doi:10.1016/j.margeo.2015.10.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, S., J. G. Duan, and T. S. Strelkoff, 2013: Grain-scale nonequilibrium sediment-transport model for unsteady flow. J. Hydraul. Eng., 139, 2236, doi:10.1061/(ASCE)HY.1943-7900.0000645.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 216 131 11
PDF Downloads 121 69 2

Vertical Modification on Depth-Integrated Ice Shelf Water Plume Modeling Based on an Equilibrium Vertical Profile of Suspended Frazil Ice Concentration

View More View Less
  • 1 Polar Climate System and Global Change Laboratory, and School of Marine Sciences, and Earth System Modelling Center, Nanjing International Academy of Meteorological Sciences, Nanjing University of Information Science and Technology, Nanjing, China
  • | 2 College of Oceanography, Hohai University, Nanjing, China
  • | 3 Polar Climate System and Global Change Laboratory, and School of Marine Sciences, and Earth System Modelling Center, Nanjing International Academy of Meteorological Sciences, Nanjing University of Information Science and Technology, Nanjing, China
Restricted access

Abstract

The ice shelf water (ISW) plume is a prevalent phenomenon at the base of an ice shelf or sea ice adjacent to the ice shelf front. Such plumes may become supercooled and deposit marine ice when they rise. In the existing frazil ice–laden ISW plume models, it is generally assumed that supercooling and frazil ice growth can be adequately treated by using depth-averaged freezing temperature and vertically uniform frazil ice concentration within a plume. In reality, however, the temperature deficit and frazil ice concentration both increase toward the top of the plume. Hence, frazil crystals typically experience a greater deficit than that suggested by the plume’s temperature subtracted from its depth-averaged freezing point. In this study, the authors considered the combined nonlinear effects of vertical structures of frazil ice concentration and thermal forcing within an ISW plume by introducing equilibrium vertical profiles of frazil ice concentration into a horizontal two-dimensional depth-integrated ISW plume model. A series of idealized numerical experiments and an observation-based simulation beneath the western side of Ronne Ice Shelf have been conducted by using the vertically modified and original depth-integrated ISW plume models. It was found that the supercooled area, supercooling level, and suspended frazil ice and marine ice productivities are all substantially underestimated by the original models. Moreover, the differences are sensitive to the selected frazil ice size configuration. These results suggest that the vertical modification introduced in this study can significantly improve simulated marine ice distribution and its corresponding production, in comparison with those estimated by previous depth-integrated models.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhaomin Wang, zhaomin.wang@hhu.edu.cn

Abstract

The ice shelf water (ISW) plume is a prevalent phenomenon at the base of an ice shelf or sea ice adjacent to the ice shelf front. Such plumes may become supercooled and deposit marine ice when they rise. In the existing frazil ice–laden ISW plume models, it is generally assumed that supercooling and frazil ice growth can be adequately treated by using depth-averaged freezing temperature and vertically uniform frazil ice concentration within a plume. In reality, however, the temperature deficit and frazil ice concentration both increase toward the top of the plume. Hence, frazil crystals typically experience a greater deficit than that suggested by the plume’s temperature subtracted from its depth-averaged freezing point. In this study, the authors considered the combined nonlinear effects of vertical structures of frazil ice concentration and thermal forcing within an ISW plume by introducing equilibrium vertical profiles of frazil ice concentration into a horizontal two-dimensional depth-integrated ISW plume model. A series of idealized numerical experiments and an observation-based simulation beneath the western side of Ronne Ice Shelf have been conducted by using the vertically modified and original depth-integrated ISW plume models. It was found that the supercooled area, supercooling level, and suspended frazil ice and marine ice productivities are all substantially underestimated by the original models. Moreover, the differences are sensitive to the selected frazil ice size configuration. These results suggest that the vertical modification introduced in this study can significantly improve simulated marine ice distribution and its corresponding production, in comparison with those estimated by previous depth-integrated models.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhaomin Wang, zhaomin.wang@hhu.edu.cn
Save