• Burchard, H., R. D. Hetland, E. Schulz, and H. M. Schuttelaars, 2011: Drivers of residual estuarine circulation in tidally energetic estuaries: Straight and irrotational channels with parabolic cross section. J. Phys. Oceanogr., 41, 548570, doi:10.1175/2010JPO4453.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S.-N., and L. P. Sanford, 2009: Axial wind effects on stratification and longitudinal salt transport in an idealized, partially mixed estuary. J. Phys. Oceanogr., 39, 19051920, doi:10.1175/2009JPO4016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S.-N., L. P. Sanford, and D. K. Ralston, 2009: Lateral circulation and sediment transport driven by axial winds in an idealized, partially mixed estuary. J. Geophys. Res., 114, C12006, doi:10.1029/2008JC005014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, P., M. Li, and Y. Li, 2013: Generation of an estuarine sediment plume by a tropical storm. J. Geophys. Res. Oceans, 118, 856868, doi:10.1002/jgrc.20070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collignon, A., and M. T. Stacey, 2012: Intratidal dynamics of fronts and lateral circulation at the shoal–channel interface in a partially stratified estuary. J. Phys. Oceanogr., 42, 869882, doi:10.1175/JPO-D-11-065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fisher, A. W., L. P. Sanford, and S. E. Suttles, 2015: Wind stress dynamics in Chesapeake Bay: Spatiotemporal variability and wave dependence in a fetch-limited environment. J. Phys. Oceanogr., 45, 26792696, doi:10.1175/JPO-D-15-0004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geyer, W. R., 1997: Influence of wind on dynamics and flushing of shallow estuaries. Estuarine Coastal Shelf Sci., 44, 713722, doi:10.1006/ecss.1996.0140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geyer, W. R., and P. MacCready, 2014: The estuarine circulation. Annu. Rev. Fluid Mech., 46, 175197, doi:10.1146/annurev-fluid-010313-141302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huijts, K. M. H., H. M. Schuttelaars, H. E. de Swart, and C. T. Friedrichs, 2009: Analytical study of the transverse distribution of along-channel and transverse residual flows in tidal estuaries. Cont. Shelf Res., 29, 89100, doi:10.1016/j.csr.2007.09.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lerczak, J. A., and W. R. Geyer, 2004: Modeling the lateral circulation in straight, stratified estuaries. J. Phys. Oceanogr., 34, 14101428, doi:10.1175/1520-0485(2004)034<1410:MTLCIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, M., P. Cheng, R. Chant, A. Valle-Levinson, and K. Arnott, 2014: Analysis of vortex dynamics of lateral circulation in a straight tidal estuary. J. Phys. Oceanogr., 44, 27792795, doi:10.1175/JPO-D-13-0212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., and M. Li, 2011: Effects of winds on stratification and circulation in a partially mixed estuary. J. Geophys. Res., 116, C12012, doi:10.1029/2010JC006893.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., and M. Li, 2012: Wind-driven lateral circulation in a stratified estuary and its effects on the along-channel flow. J. Geophys. Res., 117, C09005, doi:10.1029/2011JC007829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacCready, P., and W. R. Geyer, 2010: Advances in estuarine physics. Annu. Rev. Mar. Sci., 2, 3558, doi:10.1146/annurev-marine-120308-081015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malone, T. C., W. M. Kemp, H. W. Ducklow, W. R. Boynton, J. H. Tuttle, and R. B. Jonas, 1986: Lateral variation in the production and fate of phytoplankton in a partially stratified estuary. Mar. Ecol. Prog. Ser., 32, 149160, doi:10.3354/meps032149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monismith, S., 1986: An experimental study of the upwelling response of stratified reservoirs to surface shear stress. J. Fluid Mech., 171, 407439, doi:10.1017/S0022112086001507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds-Fleming, J. V., and R. A. Luettich, 2004: Wind-driven lateral variability in a partially mixed estuary. Estuarine Coastal Shelf Sci., 60, 395407, doi:10.1016/j.ecss.2004.02.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanford, L. P., K. G. Sellner, and D. L. Breitburg, 1990: Covariability of dissolved oxygen with physical processes in the summertime Chesapeake Bay. J. Mar. Res., 48, 567590, doi:10.1357/002224090784984713.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scully, M. E., 2010: Wind modulation of dissolved oxygen in Chesapeake Bay. Estuaries Coasts, 33, 11641175, doi:10.1007/s12237-010-9319-9.

  • Scully, M. E., C. T. Friedrichs, and J. M. Brubaker, 2005: Control of estuarine stratification and mixing by wind-induced straining of the estuarine density field. Estuaries, 28, 321326, doi:10.1007/BF02693915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scully, M. E., W. R. Geyer, and J. A. Lerczak, 2009: The influence of lateral advection on the residual estuarine circulation: A numerical modeling study of the Hudson River estuary. J. Phys. Oceanogr., 39, 107124, doi:10.1175/2008JPO3952.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seim, H. E., and M. C. Gregg, 1997: The importance of aspiration and channel curvature in producing strong vertical mixing over a sill. J. Geophys. Res., 102, 34513472, doi:10.1029/96JC03415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trowbridge, J. H., W. R. Geyer, M. M. Bowen, and A. J. Williams, 1999: Near-bottom turbulence measurements in a partially mixed estuary: Turbulent energy balance, velocity structure, and along-channel momentum balance. J. Phys. Oceanogr., 29, 30563072, doi:10.1175/1520-0485(1999)029<3056:NBTMIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valle-Levinson, A., 2008: Density-driven exchange flow in terms of the Kelvin and Ekman numbers. J. Geophys. Res., 113, C04001, doi:10.1029/2007JC004144.

    • Search Google Scholar
    • Export Citation
  • Wang, D. P., 1979: Wind-driven circulation in the Chesapeake Bay, winter 1975. J. Phys. Oceanogr., 9, 564572, doi:10.1175/1520-0485(1979)009<0564:WDCITC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, R. E., R. L. Swanson, and H. A. Crowley, 2008: Perspectives on long-term variations in hypoxic conditions in western Long Island Sound. J. Geophys. Res., 113, C12011, doi:10.1029/2007JC004693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, R. E., S. D. Bratton, J. Wang, and B. A. Colle, 2014: Evidence for directional wind response in controlling inter-annual variations in duration and areal extent of summertime hypoxia in western Long Island Sound. Estuaries Coasts, 38, 17351743, doi:10.1007/s12237-014-9914-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winant, C. D., 2007: Three-dimensional tidal flow in an elongated, rotating basin. J. Phys. Oceanogr., 37, 23452362, doi:10.1175/JPO3122.1.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 55 55 4
PDF Downloads 56 56 4

Baroclinic Effects on Wind-Driven Lateral Circulation in Chesapeake Bay

View More View Less
  • 1 Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, Maryland
© Get Permissions
Restricted access

Abstract

The 2-month-long mooring data were collected in a straight midsection of Chesapeake Bay to document the lateral circulation driven by along-channel winds. Under upestuary winds, the lateral circulation featured a clockwise (looking into estuary) circulation in the surface layer, with lateral Ekman forcing as the dominant generation mechanism. Under downestuary winds, however, the lateral circulation displayed a structure dependent on the Wedderburn number W: a counterclockwise circulation at small W and two counterrotating vortices at large W. The surface lateral velocity was phase locked to the along-channel wind speed. Analysis of the streamwise vorticity equation showed that the strength and structure of the lateral circulation in this stratified estuary were largely determined by the competition between the tilting of planetary vorticity by along-channel currents and lateral baroclinic forcing due to sloping isopycnals. Under strong, downestuary winds, the lateral baroclinic forcing offset or reversed the tilting of planetary vorticity on the western half of the estuarine channel, resulting in two counterrotating lateral circulation cells. A bottom lateral flow was observed in the deep channel and appeared to be generated by lateral Ekman forcing on the along-channel currents.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Xiaohui Xie, xxie@umces.edu

Abstract

The 2-month-long mooring data were collected in a straight midsection of Chesapeake Bay to document the lateral circulation driven by along-channel winds. Under upestuary winds, the lateral circulation featured a clockwise (looking into estuary) circulation in the surface layer, with lateral Ekman forcing as the dominant generation mechanism. Under downestuary winds, however, the lateral circulation displayed a structure dependent on the Wedderburn number W: a counterclockwise circulation at small W and two counterrotating vortices at large W. The surface lateral velocity was phase locked to the along-channel wind speed. Analysis of the streamwise vorticity equation showed that the strength and structure of the lateral circulation in this stratified estuary were largely determined by the competition between the tilting of planetary vorticity by along-channel currents and lateral baroclinic forcing due to sloping isopycnals. Under strong, downestuary winds, the lateral baroclinic forcing offset or reversed the tilting of planetary vorticity on the western half of the estuarine channel, resulting in two counterrotating lateral circulation cells. A bottom lateral flow was observed in the deep channel and appeared to be generated by lateral Ekman forcing on the along-channel currents.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Xiaohui Xie, xxie@umces.edu
Save