• Alford, M. H., 2011: Sustained, full-water-column observations of internal waves and mixing near Mendocino Escarpment. J. Phys. Oceanogr., 40, 26432660, doi:10.1175/2010JPO4502.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and R. Pinkel, 2000: Observations of overturning in the thermocline: The context of ocean mixing. J. Phys. Oceanogr., 30, 805832, doi:10.1175/1520-0485(2000)030<0805:OOOITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and Z. Zhao, 2007: Global patterns of low-mode internal-wave propagation. Part II: Group velocity. J. Phys. Oceanogr., 37, 18491858, doi:10.1175/JPO3086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and P. MacCready, 2014: Flow and mixing in Juan de Fuca Canyon, Washington. Geophys. Res. Lett., 41, 16081615, doi:10.1002/2013GL058967.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., M. C. Gregg, and M. Merrifield, 2006: Structure, propagation, and mixing of energetic baroclinic tides in Mamala Bay, Oahu, Hawaii. J. Phys. Oceanogr., 36, 9971018, doi:10.1175/JPO2877.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and et al. , 2011: Energy flux and dissipation in Luzon Strait: Two tales of two ridges. J. Phys. Oceanogr., 41, 22112222, doi:10.1175/JPO-D-11-073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, S. E., 1996: Topographically generated, subinertial flows within a finite length canyon. J. Phys. Oceanogr., 26, 16081632, doi:10.1175/1520-0485(1996)026<1608:TGSFWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, S. E., 2000: On subinertial flow in submarine canyons: Effect of geometry. J. Geophys. Res., 105, 12851297, doi:10.1029/1999JC900240.

  • Allen, S. E., and X. D. de Madron, 2009: A review of the role of submarine canyons in deep-ocean exchange with the shelf. Ocean Sci., 5, 607620, doi:10.5194/os-5-607-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, S. E., and B. M. Hickey, 2010: Dynamics of advection-driven upwelling over a shelf break submarine canyon. J. Geophys. Res., 115, C08018, doi:10.1029/2009JC005731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Althaus, A., E. Kunze, and T. Sanford, 2003: Internal tide radiation from Mendocino Escarpment. J. Phys. Oceanogr., 33, 15101527, doi:10.1175/1520-0485(2003)033<1510:ITRFME>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Avicola, G. S., J. N. Moum, A. Perlin, and M. D. Levine, 2007: Enhanced turbulence due to the superposition of internal gravity waves and a coastal upwelling jet. J. Geophys. Res., 112, C06024, doi:10.1029/2006JC003831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buijsman, M. C., and et al. , 2016: Impact of parameterized internal wave drag on the semidiurnal energy balance in a global ocean circulation model. J. Phys. Oceanogr., 46, 13991419, doi:10.1175/JPO-D-15-0074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carter, G., and M. Gregg, 2002: Intense, variable mixing near the head of Monterey Submarine Canyon. J. Phys. Oceanogr., 32, 31453165, doi:10.1175/1520-0485(2002)032<3145:IVMNTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dillon, T. M., 1982: Vertical overturns: A comparison of Thorpe and Ozmidov length scales. J. Geophys. Res., 87, 96019613, doi:10.1029/JC087iC12p09601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egbert, G., and S. Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183204, doi:10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferron, B., H. Mercier, K. Speer, A. Gargett, and K. L. Polzin, 1998: Mixing in the Romanche Fracture Zone. J. Phys. Oceanogr., 28, 19291945, doi:10.1175/1520-0485(1998)028<1929:MITRFZ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Gregg, M. C., R. A. Hall, G. S. Carter, M. H. Alford, R. C. Lien, D. P. Winkel, and D. J. Wain, 2011: Flow and mixing in Ascension, a steep, narrow canyon. J. Geophys. Res., 116, C07016, doi:10.1029/2010JC006610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hales, B., 2005: Irreversible nitrate fluxes due to turbulent mixing in a coastal upwelling system. J. Geophys. Res., 110, C10S11, doi:10.1029/2004JC002685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, R. A., and G. S. Carter, 2011: Internal tides in Monterey Submarine Canyon. J. Phys. Oceanogr., 41, 186204, doi:10.1175/2010JPO4471.1.

  • Hall, R. A., M. H. Alford, G. S. Carter, M. C. Gregg, R.-C. Lien, D. J. Wain, and Z. Zhao, 2014: Transition from partly standing to progressive internal tides in Monterey Submarine Canyon. Deep-Sea Res., 104, 164173, doi:10.1016/j.dsr2.2013.05.039.

    • Search Google Scholar
    • Export Citation
  • Hickey, B. M., 1995: Coastal submarine canyons. Topographic Effects in the Ocean: Proc. ‘Aha Huliko‘a Hawaiian Winter Workshop, Honolulu, HI, University of Hawai‘i at Mānoa, 95–110.

  • Hotchkiss, F., and C. Wunsch, 1982: Internal waves in Hudson Canyon with possible geological implications. Deep-Sea Res., 29A, 415442, doi:10.1016/0198-0149(82)90068-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnston, T. M. S., and D. L. Rudnick, 2015: Trapped diurnal internal tides, propagating semidiurnal internal tides, and mixing estimates in the California Current System from sustained glider observations, 2006–2012. Deep-Sea Res. II, 112, 6178, doi:10.1016/j.dsr2.2014.03.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnston, T. M. S., D. L. Rudnick, and S. M. Kelly, 2015: Standing internal tides in the Tasman Sea observed by gliders. J. Phys. Oceanogr., 45, 27152737, doi:10.1175/JPO-D-15-0038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., and J. D. Nash, 2010: Internal-tide generation and destruction by shoaling internal tides. Geophys. Res. Lett., 37, L23611, doi:10.1029/2010GL045598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., N. L. Jones, J. D. Nash, and A. F. Waterhouse, 2013: The geography of semidiurnal mode-1 internal-tide energy loss. Geophys. Res. Lett., 40, 46894693, doi:10.1002/grl.50872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klinck, J. M., 1989: Geostrophic adjustment over submarine canyons. J. Geophys. Res., 94, 61336144, doi:10.1029/JC094iC05p06133.

  • Klymak, J. M., and et al. , 2006: An estimate of tidal energy lost to turbulence at the Hawaiian Ridge. J. Phys. Oceanogr., 36, 11481164, doi:10.1175/JPO2885.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., and J. Toole, 1997: Tidally driven vorticity, diurnal shear, and turbulence atop Fieberling Seamount. J. Phys. Oceanogr., 27, 26632693, doi:10.1175/1520-0485(1997)027<2663:TDVDSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., L. K. Rosenfeld, G. S. Carter, and M. C. Gregg, 2002: Internal waves in Monterey Submarine Canyon. J. Phys. Oceanogr., 32, 18901913, doi:10.1175/1520-0485(2002)032<1890:IWIMSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., C. MacKay, E. E. McPhee-Shaw, K. Morrice, J. B. Girton, and S. R. Terker, 2012: Turbulent mixing and exchange with interior waters on sloping boundaries. J. Phys. Oceanogr., 42, 910927, doi:10.1175/JPO-D-11-075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lafuente, J. G., T. Sarhan, M. Vargas, J. M. Vargas, and F. Plaza, 1999: Tidal motions and tidally induced fluxes through La Linea Submarine Canyon, western Alboran Sea. J. Geophys. Res., 104, 31093119, doi:10.1029/1998JC900039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., E. Montgomery, K. L. Polzin, L. C. St. Laurent, R. Schmitt, and J. Toole, 2000: Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature, 403, 179182, doi:10.1038/35003164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, I.-H., Y.-H. Wang, J. T. Liu, W.-S. Chuang, and J. Xu, 2009: Internal tidal currents in the Gaoping (Kaoping) Submarine Canyon. J. Mar. Syst., 76, 397404, doi:10.1016/j.jmarsys.2007.12.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legg, S., 2004: Internal tides generated on a corrugated continental slope. Part I: Cross-slope barotropic forcing. J. Phys. Oceanogr., 34, 156173, doi:10.1175/1520-0485(2004)034<0156:ITGOAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mackinnon, J. A., M. H. Alford, R. Pinkel, J. M. Klymak, and Z. Zhao, 2013: The latitudinal dependence of shear and mixing in the Pacific transiting the critical latitude for PSI. J. Phys. Oceanogr., 43, 316, doi:10.1175/JPO-D-11-0107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martini, K. I., M. H. Alford, J. D. Nash, E. Kunze, and M. Merrifield, 2007: Diagnosing a partly standing internal wave in Mamala Bay, Oahu. Geophys. Res. Lett., 34, L17604, doi:10.1029/2007GL029749.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martini, K. I., M. H. Alford, E. Kunze, S. M. Kelly, and J. D. Nash, 2011: Observations of internal tides on the Oregon continental slope. J. Phys. Oceanogr., 41, 17721794, doi:10.1175/2011JPO4581.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melet, A., S. Legg, and R. Hallberg, 2016: Climatic impacts of parameterized local and remote tidal mixing. J. Climate, 29, 34733500, doi:10.1175/JCLI-D-15-0153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miles, J. W., 1961: On the stability of heterogeneous shear flows. J. Fluid Mech., 10, 496508, doi:10.1017/S0022112061000305.

  • Moum, J. N., D. R. Caldwell, J. D. Nash, and G. D. Gunderson, 2002: Observations of boundary mixing over the continental slope. J. Phys. Oceanogr., 32, 21132130, doi:10.1175/1520-0485(2002)032<2113:OOBMOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Musgrave, R. C., 2015: Tidal interactions with topography: The effects of latitude and tidal constitution on nearfield mixing. Ph.D. thesis, Scripps Institution of Oceanography, 131 pp.

  • Musgrave, R. C., J. A. Mackinnon, R. Pinkel, A. F. Waterhouse, and J. Nash, 2016: Tidally driven processes leading to near-field turbulence in a channel at the crest of the Mendocino Escarpment. J. Phys. Oceanogr., 46, 11371155, doi:10.1175/JPO-D-15-0021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, T., Y. Isoda, H. Mitsudera, S. Takagi, and M. Nagasawa, 2010: Breaking of unsteady lee waves generated by diurnal tides. Geophys. Res. Lett., 37, L04602, doi:10.1029/2009GL041456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. D., E. Kunze, J. Toole, and R. Schmitt, 2004: Internal tide reflection and turbulent mixing on the continental slope. J. Phys. Oceanogr., 34, 11171134, doi:10.1175/1520-0485(2004)034<1117:ITRATM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. D., M. H. Alford, and E. Kunze, 2005: Estimating internal wave energy fluxes in the ocean. J. Atmos. Oceanic Technol., 22, 15511570, doi:10.1175/JTECH1784.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. D., E. Kunze, C. Lee, and T. B. Sanford, 2006: Structure of the baroclinic tide generated at Kaena Ridge, Hawaii. J. Phys. Oceanogr., 36, 11231135, doi:10.1175/JPO2883.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. D., M. H. Alford, E. Kunze, K. I. Martini, and S. Kelly, 2007: Hotspots of deep ocean mixing on the Oregon continental slope. Geophys. Res. Lett., 34, L01605, doi:10.1029/2006GL028170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. D., E. Shroyer, S. Kelly, M. Inall, T. Duda, M. Levine, N. Jones, and R. Musgrave, 2012: Are any coastal internal tides predictable? Oceanography, 25, 8095, doi:10.5670/oceanog.2012.44.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petruncio, E. T., J. D. Paduan, and L. K. Rosenfeld, 2002: Numerical simulations of the internal tide in a submarine canyon. Ocean Modell., 4, 221248, doi:10.1016/S1463-5003(02)00002-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinkel, R., and et al. , 2015: Breaking internal tides keep the ocean in balance. Eos, Trans. Amer. Geophys. Union, 96, doi:10.1029/2015EO039555.

  • Rippeth, T. P., P. Wiles, M. R. Palmer, J. Sharples, and J. Tweddle, 2009: The diapcynal nutrient flux and shear-induced diapcynal mixing in the seasonally stratified western Irish Sea. Cont. Shelf Res., 29, 15801587, doi:10.1016/j.csr.2009.04.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shroyer, E. L., 2012: Turbulent kinetic energy dissipation in Barrow Canyon. J. Phys. Oceanogr., 42, 10121021, doi:10.1175/JPO-D-11-0184.1.

  • Sielbeck, S. L., 1991: Bottom trapped waves at tidal frequencies off Point Sur, California. Ph.D. thesis, Naval Postgraduate School, 62 pp.

  • Swart, N. C., S. E. Allen, and B. J. W. Greenan, 2011: Resonant amplification of subinertial tides in a submarine canyon. J. Geophys. Res., 116, C09001, doi:10.1029/2011JC006990.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanaka, T., I. Yasuda, Y. Tanaka, and G. S. Carter, 2013: Numerical study on tidal mixing along the shelf break in the Green Belt in the southeastern Bering Sea. J. Geophys. Res. Oceans, 118, 65256542, doi:10.1002/2013JC009113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1977: Turbulence and mixing in a Scottish Loch. Philos. Trans. Roy. Soc. London, A286, 125181, doi:10.1098/rsta.1977.0112.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M., 2002: Deep velocity profiling using lowered acoustic Doppler current profilers: Bottom track and inverse solutions. J. Atmos. Oceanic Technol., 19, 794807, doi:10.1175/1520-0426(2002)019<0794:DVPULA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wain, D. J., M. C. Gregg, M. H. Alford, and R. C. Lien, 2013: Propagation and dissipation of the internal tide in upper Monterey Canyon. J. Geophys. Res. Oceans, 118, 48554877, doi:10.1002/jgrc.20368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterhouse, A. F., S. E. Allen, and A. W. Bowie, 2009: Upwelling flow dynamics in long canyons at low Rossby number. J. Geophys. Res., 114, C05004, doi:10.1029/2008JC004956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W. G., T. F. Duda, and I. A. Udovydchenkov, 2014: Modeling and analysis of internal-tide generation and beamlike onshore propagation in the vicinity of shelfbreak canyons. J. Phys. Oceanogr., 44, 834849, doi:10.1175/JPO-D-13-0179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and J. N. Moum, 2010: Inertial-convective subrange estimates of thermal variance dissipation rate from moored temperature measurements. J. Atmos. Oceanic Technol., 27, 19501959, doi:10.1175/2010JTECHO746.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Z., M. H. Alford, R.-C. Lien, M. C. Gregg, and G. S. Carter, 2012: Internal tides and mixing in a submarine canyon with time-varying stratification. J. Phys. Oceanogr., 42, 21212142, doi:10.1175/JPO-D-12-045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Z., M. H. Alford, J. B. Girton, L. Rainville, and H. L. Simmons, 2016: Global observations of open-ocean mode-1 M2 internal tides. J. Phys. Oceanogr., 46, 16571684, doi:10.1175/JPO-D-15-0105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 101 101 30
PDF Downloads 65 65 32

Internal Tide Convergence and Mixing in a Submarine Canyon

View More View Less
  • 1 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
  • | 2 Large Lakes Observatory, University of Minnesota Duluth, Duluth, Minnesota
  • | 3 College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon
© Get Permissions
Restricted access

Abstract

Observations from Eel Canyon, located on the north coast of California, show that elevated turbulence in the full water column arises from the convergence of remotely generated internal wave energy. The incoming semidiurnal and bottom-trapped diurnal internal tides generate complex interference patterns. The semidiurnal internal tide sets up a partly standing wave within the canyon due to reflection at the canyon head, dissipating all of its energy within the canyon. Dissipation in the near bottom is associated with the diurnal trapped tide, while midwater isopycnal shear and strain is associated with the semidiurnal tide. Dissipation is elevated up to 600 m off the bottom, in contrast to observations over the flat continental shelf where dissipation occurs closer to the topography. Slope canyons are sinks for internal wave energy and may have important influences on the global distribution of tidally driven mixing.

Current affiliation: Mechanical Engineering Department, Massachusetts Institute of Technology, Cambridge, Massachusetts.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Amy Waterhouse, awaterhouse@ucsd.edu

Abstract

Observations from Eel Canyon, located on the north coast of California, show that elevated turbulence in the full water column arises from the convergence of remotely generated internal wave energy. The incoming semidiurnal and bottom-trapped diurnal internal tides generate complex interference patterns. The semidiurnal internal tide sets up a partly standing wave within the canyon due to reflection at the canyon head, dissipating all of its energy within the canyon. Dissipation in the near bottom is associated with the diurnal trapped tide, while midwater isopycnal shear and strain is associated with the semidiurnal tide. Dissipation is elevated up to 600 m off the bottom, in contrast to observations over the flat continental shelf where dissipation occurs closer to the topography. Slope canyons are sinks for internal wave energy and may have important influences on the global distribution of tidally driven mixing.

Current affiliation: Mechanical Engineering Department, Massachusetts Institute of Technology, Cambridge, Massachusetts.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Amy Waterhouse, awaterhouse@ucsd.edu
Save