• Abernathey, R., J. Marshall, and D. Ferreira, 2011: The dependence of Southern Ocean meridional overturning on wind stress. J. Phys. Oceanogr., 41, 22612278, doi:10.1175/JPO-D-11-023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adcroft, A., and J. Campin, 2004: Rescaled height coordinates for accurate representation of free-surface flows in ocean circulation models. Ocean Modell., 7, 269284, doi:10.1016/j.ocemod.2003.09.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aiki, H., and R. J. Greatbatch, 2014: A new expression for the form stress term in the vertically Lagrangian mean framework for the effect of surface waves on the upper ocean circulation. J. Phys. Oceanogr., 44, 323, doi:10.1175/JPO-D-12-0228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., 1983: A finite-amplitude Eliassen-Palm theorem in isentropic coordinates. J. Atmos. Sci., 40, 18771883, doi:10.1175/1520-0469(1983)040<1877:AFAEPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: Asymptotic theory for equatorial waves in weak shear. J. Atmos. Sci., 33, 20492053, doi:10.1175/1520-0469(1976)033<2049:PWIHAV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aoki, K., 2014: A constraint on the thickness-weighted average equation of motion deduced from energetics. J. Mar. Res., 72, 355382, doi:10.1357/002224014815469886.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Szoeke, R. A., and A. F. Bennett, 1993: Microstructure fluxes across density surfaces. J. Phys. Oceanogr., 23, 22542264, doi:10.1175/1520-0485(1993)023<2254:MFADS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eden, C., and R. J. Greatbatch, 2008: Towards a mesoscale eddy closure. Ocean Modell., 20, 223239, doi:10.1016/j.ocemod.2007.09.002.

  • Gille, S. T., 1997: The Southern Ocean momentum balance: Evidence for topographic effects from numerical model output and altimeter data. J. Phys. Oceanogr., 27, 22192232, doi:10.1175/1520-0485(1997)027<2219:TSOMBE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higdon, R., 1999: Implementation of a barotropic–baroclinic time splitting for isopycnic coordinate ocean modeling. J. Comput. Phys., 148, 579604, doi:10.1006/jcph.1998.6130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howard, E., A. M. Hogg, S. Waterman, and D. P. Marshall, 2015: The injection of zonal momentum by buoyancy forcing in a Southern Ocean model. J. Phys. Oceanogr., 45, 259271, doi:10.1175/JPO-D-14-0098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., and H. L. Bryden, 1989: On the size of the Antarctic Circumpolar Current. Deep-Sea Res., 36A, 3953, doi:10.1016/0198-0149(89)90017-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddison, J. R., and D. P. Marshall, 2013: The Eliassen–Palm flux tensor. J. Fluid Mech., 729, 69102, doi:10.1017/jfm.2013.259.

  • Marshall, D. P., and A. J. Adcroft, 2010: Parameterization of ocean eddies: Potential vorticity mixing, energetics and Arnold’s first stability theorem. Ocean Modell., 32, 188204, doi:10.1016/j.ocemod.2010.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, D. P., J. R. Maddison, and P. S. Berloff, 2012: A framework for parameterizing eddy potential vorticity fluxes. J. Phys. Oceanogr., 42, 539557, doi:10.1175/JPO-D-11-048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., and T. Radko, 2003: Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33, 23412354, doi:10.1175/1520-0485(2003)033<2341:RSFTAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mazloff, M. R., R. Ferrari, and T. Schneider, 2013: The force balance of the Southern Ocean meridional overturning circulation. J. Phys. Oceanogr., 43, 11931208, doi:10.1175/JPO-D-12-069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., W. R. Holland, and J. H. S. Chow, 1978: A description of numerical Antarctic Circumpolar Currents. Dyn. Atmos. Oceans, 2, 213291, doi:10.1016/0377-0265(78)90018-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W. H., and E. Palmén, 1951: Note on the dynamics of the Antarctic Circumpolar Current. Tellus, 3, 5355, doi:10.1111/j.2153-3490.1951.tb00776.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, M. R., D. W. Jacobsen, T. Ringler, and M. W. Hecht, 2015: Evaluation of the arbitrary Lagrangian–Eulerian vertical coordinate method in the MPAS-Ocean model. Ocean Modell., 86, 93113, doi:10.1016/j.ocemod.2014.12.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, H. E., and S. R. Rintoul, 2000: Eddy variability and energetics from direct current measurements in the Antarctic Circumpolar Current south of Australia. J. Phys. Oceanogr., 30, 30503076, doi:10.1175/1520-0485(2000)030<3050:EVAEFD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., and W. R. Holland, 1979: A theoretical discussion of eddy-driven mean flows. Dyn. Atmos. Oceans, 3, 289325, doi:10.1016/0377-0265(79)90015-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ringler, T., J. Thuburn, J. Klemp, and W. Skamarock, 2010: A unified approach to energy conservation and potential vorticity dynamics for arbitrarily-structured C-grids. J. Comput. Phys., 229, 30653090, doi:10.1016/j.jcp.2009.12.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ringler, T., M. Petersen, R. L. Higdon, D. Jacobsen, P. W. Jones, and M. Maltrud, 2013: A multi-resolution approach to global ocean modeling. Ocean Modell., 69, 211232, doi:10.1016/j.ocemod.2013.04.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saenz, J. A., Q. Chen, and T. Ringler, 2015: Prognostic residual mean flow in an ocean general circulation model and its relation to prognostic Eulerian mean flow. J. Phys. Oceanogr., 45, 22472260, doi:10.1175/JPO-D-15-0024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., 1999: Geostrophic circulation in a rectangular basin with a circumpolar connection. J. Phys. Oceanogr., 29, 31753184, doi:10.1175/1520-0485(1999)029<3175:GCIARB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W., and A. Gassmann, 2011: Conservative transport schemes for spherical geodesic grids: High-order flux operators for ODE-based time integration. Mon. Wea. Rev., 139, 29622975, doi:10.1175/MWR-D-10-05056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., and A. F. Thompson, 2013: Connecting Antarctic cross-slope exchange with Southern Ocean overturning. J. Phys. Oceanogr., 43, 14531471, doi:10.1175/JPO-D-12-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thuburn, J., T. Ringler, W. Skamarock, and J. Klemp, 2009: Numerical representation of geostrophic modes on arbitrarily structured C-grids. J. Comput. Phys., 228, 83218335, doi:10.1016/j.jcp.2009.08.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tréguier, A. M., I. Held, and V. Larichev, 1997: Parameterization of quasigeostrophic eddies in primitive equation ocean models. J. Phys. Oceanogr., 27, 567580, doi:10.1175/1520-0485(1997)027<0567:POQEIP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, W. R., 2012: An exact thickness-weighted average formulation of the Boussinesq equations. J. Phys. Oceanogr., 42, 692707, doi:10.1175/JPO-D-11-0102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 39 39 3
PDF Downloads 27 27 4

A Thickness-Weighted Average Perspective of Force Balance in an Idealized Circumpolar Current

View More View Less
  • 1 Fluid Dynamics and Solid Mechanics, Los Alamos National Laboratory, Los Alamos, New Mexico
© Get Permissions
Restricted access

Abstract

The exact, three-dimensional, thickness-weighted averaged (TWA) Boussinesq equations are used to diagnose eddy–mean flow interaction in an idealized circumpolar current (ICC). The force exerted by mesoscale eddies on the TWA velocity is expressed as the divergence of the Eliassen–Palm flux tensor. Consistent with previous findings, the analysis indicates that the dynamically relevant definition of the ocean surface layer is composed of the set of buoyancy coordinates that ever reside at the ocean surface at a given horizontal position. The surface layer is found to be a physically distinct object with a diabatic and force balance that is largely isolated from the underlying adiabatic region in the interior. Within the ICC surface layer, the TWA meridional velocity is southward/northward in the top/bottom half and has a value near zero at the bottom. In the top half of the surface layer, the zonal forces due to wind stress and meridional advection of potential vorticity act to accelerate the TWA zonal velocity; equilibrium is obtained by eddies decelerating the zonal flow via a downward flux of eastward momentum that increases with depth. In the bottom half of the surface layer, the accelerating force of the wind stress is balanced by the eddy force and meridional advection of potential vorticity. The bottom of the surface layer coincides with the location where the zonal eddy force, meridional advection of potential vorticity, and zonal wind stress force are all zero. The net meridional transport Sf within the surface layer is a small residual of its southward and northward TWA meridional flows. The mean meridional gradient of the surface layer buoyancy is advected by Sf to balance the surface buoyancy flux.

Denotes content that is immediately available upon publication as open access.

Los Alamos National Laboratory Contribution Number LA-UR-16-22514.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Todd Ringler, ringler@lanl.gov

Abstract

The exact, three-dimensional, thickness-weighted averaged (TWA) Boussinesq equations are used to diagnose eddy–mean flow interaction in an idealized circumpolar current (ICC). The force exerted by mesoscale eddies on the TWA velocity is expressed as the divergence of the Eliassen–Palm flux tensor. Consistent with previous findings, the analysis indicates that the dynamically relevant definition of the ocean surface layer is composed of the set of buoyancy coordinates that ever reside at the ocean surface at a given horizontal position. The surface layer is found to be a physically distinct object with a diabatic and force balance that is largely isolated from the underlying adiabatic region in the interior. Within the ICC surface layer, the TWA meridional velocity is southward/northward in the top/bottom half and has a value near zero at the bottom. In the top half of the surface layer, the zonal forces due to wind stress and meridional advection of potential vorticity act to accelerate the TWA zonal velocity; equilibrium is obtained by eddies decelerating the zonal flow via a downward flux of eastward momentum that increases with depth. In the bottom half of the surface layer, the accelerating force of the wind stress is balanced by the eddy force and meridional advection of potential vorticity. The bottom of the surface layer coincides with the location where the zonal eddy force, meridional advection of potential vorticity, and zonal wind stress force are all zero. The net meridional transport Sf within the surface layer is a small residual of its southward and northward TWA meridional flows. The mean meridional gradient of the surface layer buoyancy is advected by Sf to balance the surface buoyancy flux.

Denotes content that is immediately available upon publication as open access.

Los Alamos National Laboratory Contribution Number LA-UR-16-22514.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Todd Ringler, ringler@lanl.gov
Save