• Anderson, S. P., and N. Sharma, 2008: Satellite-tracked drifter measurements of inertial currents in the Gulf of Mexico. Proc. IEEE/OES Ninth Working Conf. on Current Measurement Technology, Charleston, SC, IEEE/OES, 285–288, doi:10.1109/CCM.2008.4480882.

    • Crossref
    • Export Citation
  • Artale, V., G. Boffetta, A. Celani, M. Cencini, and A. Vulpiani, 1997: Dispersion of passive tracers in closed basins: Beyond the diffusion coefficient. Phys. Fluids, 9, 31623171, doi:10.1063/1.869433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Babiano, A., C. Basdevant, P. LeRoy, and R. Sadourny, 1990: Relative dispersion in two-dimensional turbulence. J. Fluid Mech., 214, 535557, doi:10.1017/S0022112090000258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beron-Vera, F. J., and J. H. LaCasce, 2016: Statistics of simulated and observed pair separations in the Gulf of Mexico. J. Phys. Oceanogr., 46, 21832199, doi:10.1175/JPO-D-15-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cordero-Quirós, N., 2015: Variabilidad estacional de la circulación inducida por viento en el Golfo de Campeche (in Spanish). MSc thesis, Dept. of Physical Oceanography, CICESE, 39 pp.

  • DiMarco, S. F., W. D. Nowlin Jr., and R. O. Reid, 2005: A statistical description of the velocity fields from upper ocean drifters in the Gulf of Mexico. Circulation in the Gulf of Mexico: Observations and Models, Geophys. Monogr., Vol. 161, Amer. Geophys. Union, 101–110.

    • Crossref
    • Export Citation
  • d’Ovidio, F., C. López, E. Hernández-García, and V. Fernández, 2004: Mixing structures in the Mediterranean Sea from finite-size Lyapunov exponents. Geophys. Res. Lett., 31, L17203, doi:10.1029/2004GL020328.

    • Search Google Scholar
    • Export Citation
  • Dubranna, J., P. Pérez-Brunius, M. López, and J. Candela, 2011: Circulation over the continental shelf of the western and southwestern Gulf of Mexico. J. Geophys. Res., 116, C08009, doi:10.1029/2011JC007007.

    • Search Google Scholar
    • Export Citation
  • Graff, L. S., S. Guttu, and J. H. LaCasce, 2015: Relative dispersion in the atmosphere from reanalysis winds. J. Atmos. Sci., 72, 27692785, doi:10.1175/JAS-D-14-0225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haza, A. C., A. C. Poje, T. M. Ozgokmen, and P. Martin, 2008: Relative dispersion from a high-resolution coastal model of the Adriatic Sea. Ocean Modell., 22, 4865, doi:10.1016/j.ocemod.2008.01.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jullien, M. C., J. Paret, and P. Tabeling, 1999: Richardson pair dispersion in two-dimensional turbulence. Phys. Rev. Lett., 82, 28722875, doi:10.1103/PhysRevLett.82.2872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karrasch, D., and G. Haller, 2013: Do finite-size Lyapunov exponents detect coherent structures? Chaos, 23, 043126, doi:10.1063/1.4837075.

  • Koszalka, I., J. H. LaCasce, and K. A. Orvik, 2009: Relative dispersion in the Nordic Seas. J. Mar. Res., 67, 411433, doi:10.1357/002224009790741102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., 2008: Lagrangian statistics from oceanic and atmospheric observations. Transport and Mixing in Geophysical Flows, J. B. Weiss and A. Provenzale, Eds., Lecture Notes in Physics Series, Vol. 744, Springer, 165–218, doi:10.1007/978-3-540-75215-8_8.

    • Crossref
    • Export Citation
  • LaCasce, J. H., 2010: Relative displacement probability distribution functions from balloons and drifters. J. Mar. Res., 68, 433457, doi:10.1357/002224010794657155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., and C. Ohlmann, 2003: Relative dispersion at the surface of the Gulf of Mexico. J. Mar. Res., 61, 285312, doi:10.1357/002224003322201205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lacorata, G., E. Aureli, and A. Vulpiani, 2001: Drifter dispersion in the Adriatic Sea: Lagrangian data and chaotic model. Ann. Geophys., 19, 121129, doi:10.5194/angeo-19-121-2001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, J. T., 1972: Relative dispersion in the enstrophy-cascading inertial range of homogeneous two-dimensional turbulence. J. Atmos. Sci., 29, 394396, doi:10.1175/1520-0469(1972)029<0394:RDITEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and S. Elipot, 2010: Surface drifter pair spreading in the North Atlantic. J. Geophys. Res., 115, C12017, doi:10.1029/2010JC006338.

  • Monreal-Gómez, M. A., and D. Salas de León, 1997: Circulación y estructura termohalina del Golfo de México. Contribución a la Oceanografía Física en México, Monogr. Unión Geofís. Mex., Vol. 3, Unión Geofísica Mexicana, 183–199.

  • Ohlmann, J. C., and P. P. Niiler, 2005: Circulation over the continental shelf in the northern Gulf of Mexico. Prog. Oceanogr., 64, 4581, doi:10.1016/j.pocean.2005.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olascoaga, M. J., and et al. , 2013: Drifter motion in the Gulf of Mexico constrained by altimetric Lagrangian coherent structures. Geophys. Res. Lett., 40, 61716175, doi:10.1002/2013GL058624.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ollitrault, M., C. Gabillet, and A. C. de Verdiere, 2005: Open ocean regimes of relative dispersion. J. Fluid Mech., 533, 381407, doi:10.1017/S0022112005004556.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pérez-Brunius, P., P. García-Carrillo, J. Dubranna, J. Sheinbaum, and J. Candela, 2013: Direct observations of the upper layer circulation in the southern Gulf of Mexico. Deep-Sea Res. II, 85, 182194, doi:10.1016/j.dsr2.2012.07.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poje, A. C., and et al. , 2014: The nature of surface dispersion near the Deepwater Horizon oil spill. Proc. Natl. Acad. Sci. USA, 111, 12 69312 698, doi:10.1073/pnas.1402452111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, L. F., 1926: Atmospheric diffusion on a distance-neighbour graph. Proc. Roy. Soc. London, A110, 709737, doi:10.1098/rspa.1926.0043.

    • Search Google Scholar
    • Export Citation
  • Rodríguez-Outerelo, J., 2015: Conectividad del Golfo de Campeche con el resto del Golfo de México a partir de datos Lagrangianos reales y simulados (in Spanish). MSc thesis, Dept. of Physical Oceanography, CICESE, 58 pp.

  • Scatamacchia, R., L. Biferale, and F. Toschi, 2012: Extreme events in the dispersions of two neighboring particles under the influence of fluid turbulence. Phys. Rev. Lett., 109, 144501, doi:10.1103/PhysRevLett.109.144501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharma, N., P. Brickley, G. Owen, and P. Coholan, 2010: Use of air-deployed drogued drifting buoys for oil spill tracking. Proc. OCEANS 2010, Seattle, WA, MTS/IEEE, 1–9, doi:10.1109/OCEANS.2010.5663921.

    • Crossref
    • Export Citation
  • Sturges, W., 1993: The annual cycle of the western boundary current in the Gulf of Mexico. J. Geophys. Res., 98, 18 05318 068, doi:10.1029/93JC01730.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vázquez de la Cerda, A., R. O. Reid, S. F. DiMarco, and A. E. Jochens, 2005: BOC circulation: An update. Circulation in the Gulf of Mexico: Observations and Models, W. Sturges and A. Lugo-Fernandez, Eds., Geophys. Monogr., Vol. 161, Amer. Geophys. Union, 279–293.

  • Vukovich, F. M., 2007: Climatology of ocean features in the Gulf of Mexico using satellite remote sensing data. J. Phys. Oceanogr., 37, 689707, doi:10.1175/JPO2989.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zavala-Hidalgo, J., S. L. Morey, and J. J. O’Brien, 2003: Seasonal circulation on the western shelf of the Gulf of Mexico using a high-resolution numerical model. J. Geophys. Res., 108, 3389, doi:10.1029/2003JC001879.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zavala-Hidalgo, J., R. Romero-Centeno, A. Mateos-Jasso, L. S. Morey, and B. Martinez-Lopez, 2014: The response of the Gulf of Mexico to wind and heat flux forcing: What has been learned in recent years? Atmósfera, 27, 317334, doi:10.1016/S0187-6236(14)71119-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zavala Sansón, L., 2015: Surface dispersion in the Gulf of California. Prog. Oceanogr., 137, 2437, doi:10.1016/j.pocean.2015.04.008.

  • Zavala Sansón, L., P. Pérez-Brunius, and J. Sheinbaum, 2017: Point source dispersion of surface drifters in the southern Gulf of Mexico. Environ. Res. Lett., 12, 024006, doi:10.1088/1748-9326/aa537c.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 86 86 12
PDF Downloads 44 44 9

Surface Relative Dispersion in the Southwestern Gulf of Mexico

View More View Less
  • 1 CICESE, Ensenada, Baja California, Mexico
© Get Permissions
Restricted access

Abstract

Surface dispersion properties in the southwestern Gulf of Mexico are studied by using a set of 441 drifters released during a 7-yr period and tracked for 2 months on average. The drifters have a drogue below the surface Ekman layer, so they approximately follow oceanic currents. This study follows two different approaches: First, two-particle (or pair) statistics are calculated [relative dispersion and finite-scale Lyapunov exponents (FSLEs)]. Relative dispersion estimates are consistent with theoretical dispersion regimes of two-dimensional turbulence: an exponential growth during the first 3 days, a Richardson-like regime between 3 and 20 days (in which relative dispersion grows as a power law in time), and standard dispersion (linear growth) for longer times. The FSLEs yield a power-law regime for scales between 10 and 150 km but do not detect an exponential regime for short separations (less than 10 km). Robust estimates of diffusivities based on both relative dispersion and FSLEs are provided. Second, two different dispersion scenarios are revealed by drifter trajectories and altimetric data and supported by two-particle statistics: (i) a south-to-north advection of drifters, predominantly along the western shelf of the region, and (ii) a retention of drifters during several weeks at the Bay of Campeche, the southernmost part of the Gulf of Mexico. Dominant processes that control the dispersion are the arrival of anticyclonic Loop Current eddies to the western shelf and their interaction with the semipermanent cyclonic structure in the Bay of Campeche.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Luis Zavala Sansón, lzavala@cicese.mx

Abstract

Surface dispersion properties in the southwestern Gulf of Mexico are studied by using a set of 441 drifters released during a 7-yr period and tracked for 2 months on average. The drifters have a drogue below the surface Ekman layer, so they approximately follow oceanic currents. This study follows two different approaches: First, two-particle (or pair) statistics are calculated [relative dispersion and finite-scale Lyapunov exponents (FSLEs)]. Relative dispersion estimates are consistent with theoretical dispersion regimes of two-dimensional turbulence: an exponential growth during the first 3 days, a Richardson-like regime between 3 and 20 days (in which relative dispersion grows as a power law in time), and standard dispersion (linear growth) for longer times. The FSLEs yield a power-law regime for scales between 10 and 150 km but do not detect an exponential regime for short separations (less than 10 km). Robust estimates of diffusivities based on both relative dispersion and FSLEs are provided. Second, two different dispersion scenarios are revealed by drifter trajectories and altimetric data and supported by two-particle statistics: (i) a south-to-north advection of drifters, predominantly along the western shelf of the region, and (ii) a retention of drifters during several weeks at the Bay of Campeche, the southernmost part of the Gulf of Mexico. Dominant processes that control the dispersion are the arrival of anticyclonic Loop Current eddies to the western shelf and their interaction with the semipermanent cyclonic structure in the Bay of Campeche.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Luis Zavala Sansón, lzavala@cicese.mx
Save