• Aagaard, K., L. K. Coachman, and E. Carmack, 1981: On the halocline of the Arctic Ocean. Deep-Sea Res., 28, 529545, doi:10.1016/0198-0149(81)90115-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bamber, J., M. van den Broeke, J. Ettema, J. Lenaerts, and E. Rignot, 2012: Recent large increases in freshwater fluxes from Greenland into the North Atlantic. Geophys. Res. Lett., 39, L19501, doi:10.1029/2012GL052552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coachman, L. K., and K. Aagaard, 1974: Physical oceanography of arctic and subarctic seas. Marine Geology and Oceanography of the Arctic Seas, Y. Herman, Ed., Springer-Verlag, 1–72.

    • Crossref
    • Export Citation
  • Enderlin, E. M., and I. M. Howat, 2013: Submarine melt rate estimates for floating termini of Greenland outlet glaciers (2000-2010). J. Glaciol., 59, 6775, doi:10.3189/2013JoG12J049.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Falkner, K. K., and et al. , 2011: Context for the recent massive Petermann Glacier calving event. Eos, Trans. Amer. Geophys. Union, 92, 117118, doi:10.1029/2011EO140001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flato, G., and et al. , 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741–866.

  • Gade, H. G., 1979: Melting of ice in sea water: A primitive model with application to the Antarctic ice shelf and icebergs. J. Phys. Oceanogr., 9, 189198, doi:10.1175/1520-0485(1979)009<0189:MOIISW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, R. H., and F. Straneo, 2016: Heat, salt, and freshwater budgets for a glacial fjord in Greenland. J. Phys. Oceanogr., 46, 27352768, doi:10.1175/JPO-D-15-0134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobs, S. S., A. Jenkins, C. F. Giulivi, and P. Dutrieux, 2011: Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf. Nat. Geosci., 4, 519523, doi:10.1038/ngeo1188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jakobsson, M., and et al. , 2012: The International Bathymetric Chart of the Arctic Ocean (IBCAO) version 3.0. Geophys. Res. Lett., 39, L12609, doi:10.1029/2012GL052219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenkins, A., 1999: The impact of melting ice on ocean waters. J. Phys. Oceanogr., 29, 23702381, doi:10.1175/1520-0485(1999)029<2370:TIOMIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, H. L., A. Münchow, K. K. Falkner, and H. Melling, 2011: Ocean circulation and properties in Petermann Fjord, Greenland. J. Geophys. Res., 116, C01003, doi:10.1029/2010JC006519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khan, S. A., and et al. , 2014: Sustained mass loss of the northeast Greenland ice sheet triggered by regional warming. Nat. Climate Change, 4, 292299, doi:10.1038/nclimate2161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and P. M. Barker, 2011: Getting started with TEOS-10 and the Gibbs Seawater (GSW) oceanographic toolbox. SCOR/IAPSO WG127, 28 pp. [Available online at www.teos-10.org/pubs/Getting_Started.pdf.]

  • McDougall, T. J., P. M. Barker, R. Feistel, and B. K. Galton-Fenzi, 2014: Melting of ice and sea ice into seawater and frazil ice formation. J. Phys. Oceanogr., 44, 17511775, doi:10.1175/JPO-D-13-0253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Millgate, T., P. R. Holland, A. Jenkins, and H. L. Johnson, 2013: The effect of basal channels on oceanic ice-shelf melting. J. Geophys. Res. Oceans, 118, 69516964, doi:10.1002/2013JC009402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, R. M., and D. W. R. Wallace, 1988: A relationship between heat transfer to sea ice and temperature–salinity properties of Arctic Ocean waters. J. Geophys. Res., 93, 565571, doi:10.1029/JC093iC01p00565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Münchow, A., and H. Melling, 2008: Ocean current observations from Nares Strait to the west of Greenland: Interannual to tidal variability and forcing. J. Mar. Res., 66, 801833, doi:10.1357/002224008788064612.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Münchow, A., L. Padman, and H. A. Fricker, 2014: Interannual changes of the floating ice shelf of Petermann Gletscher, north Greenland, from 2000 to 2012. J. Glaciol., 60, 489499, doi:10.3189/2014JoG13J135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Münchow, A., L. Padman, P. Washam, and K. W. Nicholls, 2016: The ice shelf of Petermann Glacier, north Greenland, and its connection to the Arctic and Atlantic Oceans. Oceanography, 29, 8495, doi:10.5670/oceanog.2016.101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nick, F., and et al. , 2012: The response of Petermann Glacier, Greenland, to large calving events, and its future stability in the context of atmospheric and oceanic warming. J. Glaciol., 58, 229239, doi:10.3189/2012JoG11J242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nick, F., A. Vieli, M. L. Andersen, I. Joughin, A. Payne, T. L. Edwards, F. Pattyn, and R. S. W. van de Wal, 2013: Future sea-level rise from Greenland’s main outlet glaciers in a warming climate. Nature, 497, 235238, doi:10.1038/nature12068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rignot, E., 1996: Tidal motion, ice velocity and melt rate of Petermann Gletscher, Greenland, measured from radar interferometry. J. Glaciol., 42, 476485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rignot, E., and P. Kanagaratnam, 2006: Changes in the velocity structure of the Greenland ice sheet. Science, 311, 986990, doi:10.1126/science.1121381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rignot, E., and K. Steffen, 2008: Channelized bottom melting and stability of floating ice shelves. Geophys. Res. Lett., 35, L02503, doi:10.1029/2007GL031765.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straneo, F., and et al. , 2012: Characteristics of ocean waters reaching Greenland’s glaciers. Ann. Glaciol., 53, 202210, doi:10.3189/2012AoG60A059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straneo, F., and et al. , 2013: Challenges to understanding the dynamic response of Greenland’s marine terminating glaciers to oceanic and atmospheric forcing. Bull. Amer. Meteor. Soc., 94, 11311144, doi:10.1175/BAMS-D-12-00100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swingedouw, D., J. Mignot, P. Braconnot, E. Mosquet, M. Kageyama, and R. Alkama, 2009: Impact of freshwater release in the North Atlantic under different climate conditions in an OAGCM. J. Climate, 22, 63776403, doi:10.1175/2009JCLI3028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velicogna, I., T. C. Sutterley, and M. R. van den Broeke, 2014: Regional acceleration in ice mass loss from Greenland and Antarctica using grace time-variable gravity data. Geophys. Res. Lett., 41, 81308137, doi:10.1002/2014GL061052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wåhlin, A. K., X. Yuan, G. Björk, and C. Nohr, 2010: Inflow of warm circumpolar deep water in the central Amundsen shelf. J. Phys. Oceanogr., 40, 14271434, doi:10.1175/2010JPO4431.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zwally, H. J., and et al. , 2011: Greenland ice sheet mass balance: Distribution of increased mass loss with climate warming; 2003–07 versus 1992–2002. J. Glaciol., 57, 88102.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 83 83 14
PDF Downloads 52 52 8

Pathways of Meltwater Export from Petermann Glacier, Greenland

View More View Less
  • 1 Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
  • | 2 Department of Earth Sciences, University of Oxford, Oxford, United Kingdom
  • | 3 College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware
© Get Permissions
Restricted access

Abstract

Intrusions of Atlantic Water cause basal melting of Greenland’s marine-terminating glaciers and ice shelves, such as that of Petermann Glacier, in northwest Greenland. The fate of the resulting glacial meltwater is largely unknown. It is investigated here, using hydrographic observations collected during a research cruise in Petermann Fjord and adjacent Nares Strait onboard icebreaker (I/B) Oden in August 2015. A three end-member mixing method provides the concentration of Petermann ice shelf meltwater. Meltwater from Petermann is found in all of the casts in adjacent Nares Strait, with the highest concentration along the Greenland coast in the direction of Kelvin wave phase propagation. The meltwater from Petermann mostly flows out on the northeast side of the fjord as a baroclinic boundary current, with the depth of maximum meltwater concentrations approximately 150 m and shoaling along its pathway. At the outer sill, which separates the fjord from the ambient ocean, approximately 0.3 mSv (1 Sv ≡ 106 m3 s−1) of basal meltwater leaves the fjord at depths between 100 and 300 m. The total geostrophic heat and freshwater fluxes close to the glacier’s terminus in August 2015 were similar to those estimated in August 2009, before the two major calving events that reduced the length of Petermann’s ice tongue by nearly a third and despite warmer inflowing Atlantic Water. These results provide a baseline but also highlight what is needed to assess properly the impact on ocean circulation and sea level of Greenland’s mass loss as the Atlantic Water warms up.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (http://www.ametsoc.org/PUBSCopyrightPolicy).

Corresponding author e-mail: Céline Heuzé, celine.heuze@marine.gu.se

Abstract

Intrusions of Atlantic Water cause basal melting of Greenland’s marine-terminating glaciers and ice shelves, such as that of Petermann Glacier, in northwest Greenland. The fate of the resulting glacial meltwater is largely unknown. It is investigated here, using hydrographic observations collected during a research cruise in Petermann Fjord and adjacent Nares Strait onboard icebreaker (I/B) Oden in August 2015. A three end-member mixing method provides the concentration of Petermann ice shelf meltwater. Meltwater from Petermann is found in all of the casts in adjacent Nares Strait, with the highest concentration along the Greenland coast in the direction of Kelvin wave phase propagation. The meltwater from Petermann mostly flows out on the northeast side of the fjord as a baroclinic boundary current, with the depth of maximum meltwater concentrations approximately 150 m and shoaling along its pathway. At the outer sill, which separates the fjord from the ambient ocean, approximately 0.3 mSv (1 Sv ≡ 106 m3 s−1) of basal meltwater leaves the fjord at depths between 100 and 300 m. The total geostrophic heat and freshwater fluxes close to the glacier’s terminus in August 2015 were similar to those estimated in August 2009, before the two major calving events that reduced the length of Petermann’s ice tongue by nearly a third and despite warmer inflowing Atlantic Water. These results provide a baseline but also highlight what is needed to assess properly the impact on ocean circulation and sea level of Greenland’s mass loss as the Atlantic Water warms up.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (http://www.ametsoc.org/PUBSCopyrightPolicy).

Corresponding author e-mail: Céline Heuzé, celine.heuze@marine.gu.se
Save