• Beron-Vera, F. J., and J. H. LaCasce, 2016: Statistics of simulated and observed pair separations in the Gulf of Mexico. J. Phys. Oceanogr., 46, 21832199, doi:10.1175/JPO-D-15-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booth, J., and I. Kamenkovich, 2008: Isolating the role of transient mesoscale eddies in mixing of a passive tracer in an eddy resolving model. J. Geophys. Res., 113, C05021, doi:10.1029/2007JC004510.

    • Search Google Scholar
    • Export Citation
  • Buesseler, K. O., M. Aoyama, and M. Fukasawa, 2011: Impacts of the Fukushima nuclear power plants on marine radioactivity. Environ. Sci. Technol., 45, 99319935, doi:10.1021/es202816c.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buesseler, K. O., and et al. , 2012: Fukushima-derived radionuclides in the ocean and biota off Japan. Proc. Natl. Acad. Sci. USA, 109, 59845988, doi:10.1073/pnas.1120794109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunningham, S. A., and et al. , 2007: Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science, 317, 935938, doi:10.1126/science.1141304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henning, C. C., and G. Vallis, 2004: The effects of mesoscale eddies on the main subtropical thermocline. J. Phys. Oceanogr., 34, 24282443, doi:10.1175/JPO2639.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kamenkovich, I., I. I. Rypina, and P. Berloff, 2015: Properties and origins of the anisotropic eddy-induced transport in the North Atlantic. J. Phys. Oceanogr., 45, 778791, doi:10.1175/JPO-D-14-0164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koltermann, K. P., V. V. Gouretski, and K. Jancke, 2011: Atlantic Ocean. Vol. 3, Hydrographic Atlas of the World Ocean Circulation Experiment (WOCE), M. Sparrow, P. Chapman, and J. Gould, Eds., International WOCE Project Office, 174 pp.

  • Lumpkin, R., L. Centurioni, and R. Perez, 2016: Fulfilling observing system implementation requirements with the global drifter array. J. Atmos. Oceanic Technol., 33, 685695, doi:10.1175/JTECH-D-15-0255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Macdonald, A. M., 1998: The global ocean circulation: A hydrographic estimate and regional analysis. Prog. Oceanogr., 41, 281382, doi:10.1016/S0079-6611(98)00020-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manning, J. P., D. J. McGillicuddy Jr., N. R. Pettigrew, J. H. Churchill, and L. S. Incze, 2009: Drifter observations of the Gulf of Maine coastal current. Cont. Shelf Res., 29, 835845, doi:10.1016/j.csr.2008.12.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maximenko, N. A., J. Hafner, and P. P. Niiler, 2012: Pathways of marine debris derived from trajectories of Lagrangian drifters. Mar. Pollut. Bull., 65, 5162, doi:10.1016/j.marpolbul.2011.04.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., R. Ferrari, and K. L. Polzin, 2011: Eddy stirring in the Southern Ocean. J. Geophys. Res., 116, C09019, doi:10.1029/2010JC006818.

    • Search Google Scholar
    • Export Citation
  • Olascoaga, M. J., and et al. , 2013: Drifter motion in the Gulf of Mexico constrained by altimetric Lagrangian coherent structures. Geophys. Res. Lett., 40, 61716175, doi:10.1002/2013GL058624.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poje, A. C., and et al. , 2014: Submesoscale dispersion in the vicinity of the Deepwater Horizon spill. Proc. Natl. Acad. Sci. USA, 111, 12 69312 698, doi:10.1073/pnas.1402452111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rypina, I. I., L. J. Pratt, and M. S. Lozier, 2011: Near-surface transport pathways in the North Atlantic Ocean. J. Phys. Oceanogr., 41, 911925, doi:10.1175/2011JPO4498.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rypina, I. I., I. Kamenkovich, L. J. Pratt, and P. Berloff, 2012: Eddy-induced particle dispersion in the North Atlantic. J. Phys. Oceanogr., 42, 22062228, doi:10.1175/JPO-D-11-0191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rypina, I. I., S. Jayne, S. Yoshida, A. Macdonald, E. Douglass, and K. Buesseler, 2013: Short-term dispersal of Fukushima-derived radionuclides off Japan: Modeling efforts and model-data intercomparison. Biogeosciences, 10, 49734990, doi:10.5194/bg-10-4973-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rypina, I. I., S. R. Jayne, S. Yoshida, A. M. Macdonald, and K. Buesseler, 2014a: Drifter-based estimate of the 5 year dispersal of Fukushima-derived radionuclides. J. Geophys. Res. Oceans, 119, 81778193, doi:10.1002/2014JC010306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rypina, I. I., A. Kirincich, R. Limeburner, and I. A. Udovydchenkov, 2014b: Eulerian and Lagrangian correspondence of high-frequency radar and surface drifter data: Effects of radar resolution and flow components. J. Atmos. Oceanic Technol., 31, 945966, doi:10.1175/JTECH-D-13-00146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rypina, I. I., A. Kirincich, S. Lentz, and M. Sundermeyer, 2016: Investigating the eddy diffusivity concept in the coastal ocean. J. Phys. Oceanogr., 46, 22012218, doi:10.1175/JPO-D-16-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sallee, J.-B., K. Speer, S. Rintoul, and S. Wijffels, 2010: Southern Ocean thermocline ventilation. J. Phys. Oceanogr., 40, 509529, doi:10.1175/2009JPO4291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sallee, J.-B., R. Matear, A. Lenton, and S. R. Rintoul, 2012: Localized subduction of anthropogenic carbon dioxide in the Southern Hemisphere oceans. Nat. Geosci., 5, 579584, doi:10.1038/ngeo1523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stohl, A., and et al. , 2012: Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: Determination of the source term, atmospheric dispersion, and deposition. Atmos. Chem. Phys., 12, 23132343, doi:10.5194/acp-12-2313-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Sebille, E., M. H. England, and G. Froyland, 2012: Origin, dynamics and evolution of ocean garbage patches from observed surface drifters. Environ. Res. Lett., 7, 044040, doi:10.1088/1748-9326/7/4/044040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Sebille, E., and et al. , 2015: A global inventory of small floating plastic debris. Environ. Res. Lett., 10, 124006, doi:10.1088/1748-9326/10/12/124006.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 88 88 17
PDF Downloads 28 28 5

Multi-Iteration Approach to Studying Tracer Spreading Using Drifter Data

View More View Less
  • 1 Physical Oceanography Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • | 2 School of Oceanography, University of Washington, Seattle, Washington
  • | 3 Physical Oceanography Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
© Get Permissions
Restricted access

Abstract

A novel multi-iteration statistical method for studying tracer spreading using drifter data is introduced. The approach allows for the best use of the available drifter data by making use of a simple iterative procedure, which results in the statistically probable map showing the likelihood that a tracer released at some source location would visit different geographical regions, along with the associated arrival travel times. The technique is tested using real drifter data in the North Atlantic. Two examples are considered corresponding to sources in the western and eastern North Atlantic Ocean, that is, Massachusetts Bay–like and Irish Sea–like sources, respectively. In both examples, the method worked well in estimating the statistics of the tracer transport pathways and travel times throughout the entire North Atlantic. The role of eddies versus mean flow is quantified using the same technique, and eddies are shown to significantly broaden the spread of a tracer. The sensitivity of the results to the size of the source domain is investigated and causes for this sensitivity are discussed.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Irina I. Rypina, irypina@whoi.edu

Abstract

A novel multi-iteration statistical method for studying tracer spreading using drifter data is introduced. The approach allows for the best use of the available drifter data by making use of a simple iterative procedure, which results in the statistically probable map showing the likelihood that a tracer released at some source location would visit different geographical regions, along with the associated arrival travel times. The technique is tested using real drifter data in the North Atlantic. Two examples are considered corresponding to sources in the western and eastern North Atlantic Ocean, that is, Massachusetts Bay–like and Irish Sea–like sources, respectively. In both examples, the method worked well in estimating the statistics of the tracer transport pathways and travel times throughout the entire North Atlantic. The role of eddies versus mean flow is quantified using the same technique, and eddies are shown to significantly broaden the spread of a tracer. The sensitivity of the results to the size of the source domain is investigated and causes for this sensitivity are discussed.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Irina I. Rypina, irypina@whoi.edu
Save