• Alford, M. H., M. F. Cronin, and J. M. Klymak, 2012: Annual cycle and depth penetration of wind-generated near-inertial internal waves at Ocean Station Papa in the northeast Pacific. J. Phys. Oceanogr., 42, 889909, doi:10.1175/JPO-D-11-092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and et al. , 2015: The formation and fate of internal waves in the South China Sea. Nature, 521, 6569, doi:10.1038/nature14399.

  • Atlas, R., R. N. Hoffman, J. Ardizzone, S. M. Leidner, J. C. Jusem, D. K. Smith, and D. Gombos, 2011: A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bull. Amer. Meteor. Soc., 92, 157174, doi:10.1175/2010BAMS2946.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, K., and L. J. Lewis, 1979: A water mass model of the world ocean. J. Geophys. Res., 84, 25032517, doi:10.1029/JC084iC05p02503.

  • Carter, G. S., and M. C. Gregg, 2002: Intense variable mixing near the head of Monterey Submarine Canyon. J. Phys. Oceanogr., 32, 31453165, doi:10.1175/1520-0485(2002)032<3145:IVMNTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, Y. T., W. L. Hsu, J. H. Tai, T. Y. Tang, M. H. Chang, and S. Y. Chao, 2010: Cold deep water in the South China Sea. J. Oceanogr., 66, 183190, doi:10.1007/s10872-010-0016-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chao, S. Y., P. T. Shaw, and S. Y. Wu, 1996: Deep water ventilation in the South China Sea. Deep-Sea Res. I, 43, 445466, doi:10.1016/0967-0637(96)00025-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C.-T., and M. H. Huang, 1996: A mid-depth front separating the South China Sea Water and the Philippine Sea Water. J. Oceanogr., 52, 1725, doi:10.1007/BF02236530.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, P. C., and R. Li, 2000: South China Sea isopycnal-surface circulation. J. Phys. Oceanogr., 30, 24192438, doi:10.1175/1520-0485(2000)030<2419:SCSISC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, P. C., N. L. Edmons, and C. W. Fan, 1999: Dynamical mechanisms for the South China Sea seasonal circulation and thermohaline variabilities. J. Phys. Oceanogr., 29, 29712989, doi:10.1175/1520-0485(1999)029<2971:DMFTSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and R. D. Ray, 2000: Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405, 775778, doi:10.1038/35015531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fang, G., Y. Wang, Z. Wei, Y. Fang, F. Qiao, and X. Hu, 2009: Interocean circulation and heat and freshwater budgets of the South China Sea based on a numerical model. Dyn. Atmos. Oceans, 47, 5572, doi:10.1016/j.dynatmoce.2008.09.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gan, J., Z. Liu, and C. Hui, 2016: A three-layer alternating spinning circulation in the South China Sea. J. Phys. Oceanogr., 46, 23092315, doi:10.1175/JPO-D-16-0044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., J. Willebrand, T. J. McDougall, and J. C. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25, 463474, doi:10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R. X., 1999: Mixing and energetics of the oceanic thermohaline circulation. J. Phys. Oceanogr., 29, 727746, doi:10.1175/1520-0485(1999)029<0727:MAEOTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R. X., and X. Jin, 2002: Deep circulation in the South Atlantic induced by bottom-intensified mixing over the midocean ridge. J. Phys. Oceanogr., 32, 11501164, doi:10.1175/1520-0485(2002)032<1150:DCITSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., 2009: The impact of abyssal mixing parameterizations in an ocean general circulation model. J. Phys. Oceanogr., 39, 17561775, doi:10.1175/2009JPO4085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and L. C. St. Laurent, 2001: Parameterizing tidal dissipation over rough topography. Geophys. Res. Lett., 28, 811814, doi:10.1029/2000GL012044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch-Larrouy, A., G. Madec, P. Bouruet-Aubertot, T. Gerkema, L. Bessieres, and R. Molcard, 2007: On the transformation of Pacific Water into Indonesian Throughflow Water by internal tidal mixing. Geophys. Res. Lett., 34, L04604, doi:10.1029/2006GL028405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch-Larrouy, A., G. Madec, B. Blanke, and R. Molcard, 2008a: Water mass transformation along the Indonesian Throughflow in an OGCM. Ocean Dyn., 58, 289309, doi:10.1007/s10236-008-0155-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch-Larrouy, A., G. Madec, D. Iudicone, A. Atmadipoera, and R. Molcard, 2008b: Physical processes contributing to the water mass transformation of the Indonesian Throughflow. Ocean Dyn., 58, 275288, doi:10.1007/s10236-008-0154-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lan, J., N. Zhang, and Y. Wang, 2013: On the dynamics of the South China Sea deep circulation. J. Geophys. Res. Oceans, 118, 12061210, doi:10.1002/jgrc.20104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lan, J., Y. Wang, F. Cui, and N. Zhang, 2015: Seasonal variation in the South China Sea deep circulation. J. Geophys. Res. Oceans, 120, 16821690, doi:10.1002/2014JC010413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., A. J. Watson, and C. S. Law, 1993: Evidence for slow mixing across the pycnocline from an open-ocean tracer release experiment. Nature, 364, 701703, doi:10.1038/364701a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., E. T. Montgomery, K. L. Polzin, L. C. St. Laurent, R. W. Schmitt, and J. M. Toole, 2000: Evidence of enhanced mixing over rough topography in the abyssal ocean. Nature, 403, 179182, doi:10.1038/35003164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., and T. Qu, 2006: Thermohaline circulation in the deep South China Sea Basin inferred from oxygen distributions. J. Geophys. Res., 111, C05017, doi:10.1029/2005JC003203.

    • Search Google Scholar
    • Export Citation
  • Liu, C. T., and R. J. Liu, 1988: The deep current in the Bashi Channel. Acta Oceanogr. Taiwan., 20, 107116.

  • Liu, Q., H. Yang, and Z. Liu, 2001: Seasonal features of the Sverdrup circulation in the South China Sea. Prog. Nat. Sci., 11, 202206.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., and I. Lozovatsky, 2012: Upper pycnocline turbulence in the northern South China Sea. Chin. Sci. Bull., 57, 23022306, doi:10.1007/s11434-012-5137-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lozovatsky, I., Z. Liu, H. J. S. Fernando, J. Hu, and H. Wei, 2013: The TKE dissipation rate in the northern South China Sea. Ocean Dyn., 63, 11891201, doi:10.1007/s10236-013-0656-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, B. B., R. C. Lien, and D. S. Ko, 2013: The variability of internal tides in the northern South China Sea. J. Oceanogr., 69, 619630, doi:10.1007/s10872-013-0198-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKinnon, J., 2013: Mountain waves in the deep ocean. Nature, 501, 321322, doi:10.1038/501321a.

  • MacKinnon, J., and M. C. Gregg, 2003: Mixing on the late summer New England shelf—Solibores, shear, and stratification. J. Phys. Oceanogr., 33, 14761492, doi:10.1175/1520-0485(2003)033<1476:MOTLNE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantyla, A. W., 1975: On the potential temperature in the abyssal Pacific Ocean. J. Mar. Res., 33, 341354.

  • Marshall, J., and K. G. Speer, 2012: Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci., 5, 171180, doi:10.1038/ngeo1391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, doi:10.1029/96JC02775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melet, A., R. W. Hallberg, S. Legg, and K. Polzin, 2013: Sensitivity of the ocean state to the vertical distribution of internal-tide-driven mixing. J. Phys. Oceanogr., 43, 602615, doi:10.1175/JPO-D-12-055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, doi:10.1016/S0967-0637(98)00070-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2013: Overturning circulation driven by breaking internal waves in the deep ocean. Geophys. Res. Lett., 40, 31333137, doi:10.1002/grl.50542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niwa, Y., and T. Hibiya, 2014: Generation of baroclinic tide energy in a global three-dimensional numerical model with different spatial grid resolutions. Ocean Modell., 80, 5973, doi:10.1016/j.ocemod.2014.05.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 8389, doi:10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., 2009: An abyssal recipe. Ocean Modell., 30, 298309, doi:10.1016/j.ocemod.2009.07.006.

  • Polzin, K. L., J. M. Toole, J. R. Ledwell, and R. W. Schmitt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 9396, doi:10.1126/science.276.5309.93.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, T. D., 2000: Upper-layer circulation in the South China Sea. J. Phys. Oceanogr., 30, 14501460, doi:10.1175/1520-0485(2000)030<1450:ULCITS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, T. D., 2002: Evidence for water exchange between the South China Sea and the Pacific Ocean through the Luzon Strait. Acta Oceanol. Sin., 21, 175185.

    • Search Google Scholar
    • Export Citation
  • Qu, T. D., J. B. Girton, and J. A. Whitehead, 2006: Deepwater overflow through Luzon Strait. J. Geophys. Res., 111, C01002, doi:10.1029/2005JC003139.

    • Search Google Scholar
    • Export Citation
  • Qu, T. D., T. Song, and T. Yamagata, 2009: An introduction to the South China Sea throughflow: Its dynamics, variability, and implication for climate. Dyn. Atmos. Oceans, 47, 314, doi:10.1016/j.dynatmoce.2008.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 11541158, doi:10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saenko, O. A., and W. J. Merryfield, 2005: On the effect of topographically enhanced mixing on the global ocean circulation. J. Phys. Oceanogr., 35, 826834, doi:10.1175/JPO2722.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, R. B., J. A. Goff, A. C. Naveira Garabato, and A. J. Nurser, 2011: Global rate and spectral characteristics of internal gravity wave generation by geostrophic flow over topography. J. Geophys. Res., 116, C09029, doi:10.1029/2011JC007005.

    • Search Google Scholar
    • Export Citation
  • Shaw, P. T., and L. Fu, 1999: Sea surface height variations in the South China Sea from satellite altimetry. Oceanol. Acta, 22, 117, doi:10.1016/S0399-1784(99)80028-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shu, Y., H. Xue, D. Wang, F. Chai, Q. Xie, J. Yao, and J. Xiao, 2014: Meridional overturning circulation in the South China Sea envisioned from the high-resolution global reanalysis data GLBa0.08. J. Geophys. Res. Oceans, 119, 30123028, doi:10.1002/2013JC009583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., S. R. Jayne, L. C. St. Laurent, and A. J. Weaver, 2004: Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modell., 6, 245263, doi:10.1016/S1463-5003(03)00011-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1993: Large eddy simulation of complex engineering and geophysical flows. Evolution of Physical Oceanography, B. Galperin and S. A. Orszag, Eds., Cambridge University Press, 3–36.

  • St. Laurent, L. C., 2008: Turbulent dissipation on the margins of the South China Sea. Geophys. Res. Lett., 35, L23615, doi:10.1029/2008GL035520.

  • St. Laurent, L. C., H. L. Simmons, and S. R. Jayne, 2002: Estimating tidally driven mixing in the deep ocean. Geophys. Res. Lett., 29, 2106, doi:10.1029/2002GL015633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. C., H. L. Simmons, T. Y. Tang, and Y. H. Wang, 2011: Turbulent properties of internal waves in the South China Sea. Oceanography, 24, 7887, doi:10.5670/oceanog.2011.96.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2013: Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: Schematics and transports. Oceanography, 26, 8097, doi:10.5670/oceanog.2013.07.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, J., Q. Yang, X. Liang, L. Xie, D. Hu, F. Wang, and T. Qu, 2006: Observation of Luzon Strait transport. Geophys. Res. Lett., 33, L19607, doi:10.1029/2006GL026272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, J., Q. Yang, and W. Zhao, 2009: Enhanced diapycnal mixing in the South China Sea. J. Phys. Oceanogr., 39, 31913203, doi:10.1175/2009JPO3899.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G. H., S. P. Xie, T. D. Xie, and R. X. Huang, 2011: Deep South China Sea circulation. Geophys. Res. Lett., 38, L05601, doi:10.1029/2010GL046626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., 1986: Observation of abyssal flows in the northern South China Sea. Acta Oceanogr. Taiwan, 16, 3645.

  • Wang, X., S. Peng, Z. Liu, R. X. Huang, Y. K. Qian, and Y. Li, 2016: Tidal mixing in the South China Sea: An estimate based on the internal tide energetics. J. Phys. Oceanogr., 46, 107124, doi:10.1175/JPO-D-15-0082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., Z. Jing, S. Riser, and M. Visbeck, 2011: Seasonal and spatial variations of Southern Ocean diapycnal mixing from Argo profiling floats. Nat. Geosci., 4, 363366, doi:10.1038/ngeo1156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314, doi:10.1146/annurev.fluid.36.050802.122121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1961: Physical Oceanography of the Southeast Asian Waters. NAGA Rep., Vol. 2, Scripps Institute of Oceanography, 195 pp.

  • Xie, Q., J. Xiao, D. Wang, and Y. Yu, 2013: Analysis of deep-layer and bottom circulations in the South China Sea based on eight quasi-global ocean model outputs. Chin. Sci. Bull., 58, 40004011, doi:10.1007/s11434-013-5791-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, H., F. Chai, N. Pettigrew, D. Xu, M. Shi, and J. Xu, 2004: Kuroshio intrusion and the circulation in the South China Sea. J. Geophys. Res., 109, C02017, doi:10.1029/2002JC001724.

    • Search Google Scholar
    • Export Citation
  • Yang, Q., J. Tian, and W. Zhao, 2010: Observation of Luzon Strait transport in summer 2007. Deep-Sea Res. I, 57, 670676, doi:10.1016/j.dsr.2010.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Q., J. Tian, W. Zhao, X. Liang, and L. Zhou, 2014: Observations of turbulence on the shelf and slope of northern South China Sea. Deep-Sea Res. I, 87, 4352, doi:10.1016/j.dsr.2014.02.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Q., W. Zhao, X. Liang, and J. Tian, 2016: Three-Dimensional distribution of turbulent mixing in the South China Sea. J. Phys. Oceanogr., 46, 769788, doi:10.1175/JPO-D-14-0220.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yaremchuk, M., J. McCreary Jr., Z. Yu, and R. Furue, 2009: The South China Sea throughflow retrieved from climatological data. J. Phys. Oceanogr., 39, 753767, doi:10.1175/2008JPO3955.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, D., 2002: A numerical study of the South China Sea deep circulation and its relation to the Luzon Strait transport. Acta Oceanol. Sin., 21, 187202.

    • Search Google Scholar
    • Export Citation
  • Zhao, W., C. Zhou, J. Tian, Q. Yang, B. Wang, L. Xie, and T. Qu, 2014: Deep water circulation in the Luzon Strait. J. Geophys. Res. Oceans, 119, 790804, doi:10.1002/2013JC009587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Z., 2014: Internal tide radiation from the Luzon Strait. J. Geophys. Res. Oceans, 119, 54345448, doi:10.1002/2014JC010014.

  • Zhou, C., W. Zhao, J. Tian, Q. Yang, and T. Qu, 2014: Temporal variability of the deep circulation in the Luzon Strait. J. Phys. Oceanogr., 44, 29722986, doi:10.1175/JPO-D-14-0113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 117 117 27
PDF Downloads 99 99 18

Impact of Tidal Mixing on Water Mass Transformation and Circulation in the South China Sea

View More View Less
  • 1 State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
  • | 2 State Key Laboratory of Marine Environmental Science, and Department of Physical Oceanography, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
  • | 3 State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, and Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
© Get Permissions
Restricted access

Abstract

Using a high-resolution regional ocean model, the impact of tidal mixing on water mass transformation and circulation in the South China Sea (SCS) is investigated through a set of numerical experiments with different configurations of tide-induced diapycnal diffusivity. The results show that including tidal mixing in both the Luzon Strait (LS) and SCS has significant impact on the LS transport and the intermediate–deep layer circulation in the SCS Basin. Analysis of the density field indicates that tidal mixing in both the LS and SCS are essential for sustaining a consistent density gradient and thus a persistent outward-directed baroclinic pressure gradient both between the western Pacific and LS and between the LS and SCS Basin, so as to maintain the strong deep-water transport through the LS. Further analysis of water mass properties suggests that tidal mixing in the deep SCS would strengthen the horizontal density gradient, intensify the basin-scale cyclonic circulation, induce more vigorous overturning, as well as generate the subbasin-scale eddies in the abyssal SCS. The results imply that tidal mixing in both the LS and SCS plays a key dynamic role in controlling water mass properties and deep circulation features in the SCS and thus need to be deliberately parameterized in ocean circulation models for this region.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Shiqiu Peng, speng@scsio.ac.cn

Abstract

Using a high-resolution regional ocean model, the impact of tidal mixing on water mass transformation and circulation in the South China Sea (SCS) is investigated through a set of numerical experiments with different configurations of tide-induced diapycnal diffusivity. The results show that including tidal mixing in both the Luzon Strait (LS) and SCS has significant impact on the LS transport and the intermediate–deep layer circulation in the SCS Basin. Analysis of the density field indicates that tidal mixing in both the LS and SCS are essential for sustaining a consistent density gradient and thus a persistent outward-directed baroclinic pressure gradient both between the western Pacific and LS and between the LS and SCS Basin, so as to maintain the strong deep-water transport through the LS. Further analysis of water mass properties suggests that tidal mixing in the deep SCS would strengthen the horizontal density gradient, intensify the basin-scale cyclonic circulation, induce more vigorous overturning, as well as generate the subbasin-scale eddies in the abyssal SCS. The results imply that tidal mixing in both the LS and SCS plays a key dynamic role in controlling water mass properties and deep circulation features in the SCS and thus need to be deliberately parameterized in ocean circulation models for this region.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Shiqiu Peng, speng@scsio.ac.cn
Save