• Babanin, A. V., and Y. P. Soloviev, 1998: Field investigation of transformation of the wind wave frequency spectrum with fetch and the stage of development. J. Phys. Oceanogr., 28, 563576, doi:10.1175/1520-0485(1998)028<0563:FIOTOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, M. M., M. T. Montgomery, and K. A. Emanuel, 2012: Air–sea enthalpy and momentum exchange at major hurricane wind speeds observed during CBLAST. J. Atmos. Sci., 69, 31973222, doi:10.1175/JAS-D-11-0276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, P. G., and et al. , 2007: Air–sea exchange in hurricanes: Synthesis of observations from the Coupled Boundary Layer Air–Sea Transfer experiment. Bull. Amer. Meteor. Soc., 88, 357374, doi:10.1175/BAMS-88-3-357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowyer, P. J., and A. W. MacAfee, 2005: The theory of trapped-fetch waves with tropical cyclones—An operational perspective. Wea. Forecasting, 20, 229244, doi:10.1175/WAF849.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretschneider, C. L., 1959: Hurricane design wave practices. Trans. Amer. Soc. Civ. Eng., 124, 3962.

  • Bretschneider, C. L., 1972: Revision to hurricane design wave practices. Proc. 13th Coastal Eng. Conf., Vancouver, Canada, ASCE, 167–195.

    • Crossref
    • Export Citation
  • Bretschneider, C. L., and E. E. Tamaye, 1976: Hurricane wind and wave forecasting techniques. Proc. 15th Coastal Eng. Conf., Honolulu, HI, ASCE, 202–237.

    • Crossref
    • Export Citation
  • Burling, R. W., 1959: The spectrum of waves at short fetches. Dtsch. Hydrogr. Z., 12, 96117, doi:10.1007/BF02019818.

  • Dobson, F., W. Perrie, and B. Toulany, 1989: On the deep-water fetch laws for wind-generated surface gravity waves. Atmos.–Ocean, 27, 210236, doi:10.1080/07055900.1989.9649334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., J. Hamilton, and W. H. Hui, 1985: Directional spectra of wind-generated waves. Philos. Trans. Roy. Soc. London, A315, 509562, doi:10.1098/rsta.1985.0054.

    • Search Google Scholar
    • Export Citation
  • Fan, Y., I. Ginis, T. Hara, C. W. Wright, and E. J. Walsh, 2009: Numerical simulations and observations of surface wave fields under an extreme tropical cyclone. J. Phys. Oceanogr., 39, 20972116, doi:10.1175/2009JPO4224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, Y., I. Ginis, T. Hara, C. W. Wright, and E. J. Walsh, 2010: Momentum flux budget across the air–sea interface under uniform and tropical cyclone winds. J. Phys. Oceanogr., 40, 22212242, doi:10.1175/2010JPO4299.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Felizardo, F., and W. K. Melville, 1995: Correlations between ambient noise and the ocean surface wave field. J. Phys. Oceanogr., 25, 513532, doi:10.1175/1520-0485(1995)025<0513:CBANAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., and et al. , 1973: Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Ergänzungsheft zur Deutschen Hydrographischen Zeitschrift Reihe A(8) 12, 95 pp.

  • Holthuijsen, L. H., M. D. Powell, and J. D. Pietrzak, 2012: Wind and waves in extreme hurricanes. J. Geophys. Res., 117, C09003, doi:10.1029/2012JC007983.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 2004: Influence of wavelength on the parameterization of drag coefficient and surface roughness. J. Oceanogr., 60, 835841, doi:10.1007/s10872-005-5776-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 2006: Duration- and fetch-limited growth functions of wind-generated waves parameterized with three different scaling wind velocities. J. Geophys. Res., 111, C02005, doi:10.1029/2005JC003180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 2016: Fetch- and duration-limited nature of surface wave growth inside tropical cyclones: With applications to air-sea exchange and remote sensing. J. Phys. Oceanogr., 46, 4156, doi:10.1175/JPO-D-15-0173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., and D. W. Wang, 2004: Field measurements of duration-limited growth of wind-generated ocean surface waves at young stage of development. J. Phys. Oceanogr., 34, 23162326, doi:10.1175/1520-0485(2004)034<2316:FMODGO>2.0.CO;2; Corrigendum, 35, 268270, doi:10.1175/JPO-2731.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., and M. A. Sletten, 2008: Energy dissipation of wind-generated waves and whitecap coverage. J. Geophys. Res., 113, C02012, doi:10.1029/2007JC004277; Corrigendum, 114, C02015, doi:10.1029/2008JC005244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., and E. J. Walsh, 2016: Azimuthal and radial variation of wind-generated surface waves inside tropical cyclones. J. Phys. Oceanogr., 46, 26052621, doi:10.1175/JPO-D-16-0051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jarosz, E., D. A. Mitchell, D. W. Wang, and W. J. Teague, 2007: Bottom-up determination of air–sea momentum exchange under a major tropical cyclone. Science, 315, 17071709, doi:10.1126/science.1136466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, D. B., and O. H. Shemdin, 1978: Radar observations of hurricane wave directions. Proc. 16th Coastal Eng. Conf., Hamburg, Germany, ASCE, 209–226.

    • Crossref
    • Export Citation
  • Liu, L. L., W. Wang, and R. X. Huang, 2008: The mechanical energy input to the ocean induced by tropical cyclones. J. Phys. Oceanogr., 38, 12531266, doi:10.1175/2007JPO3786.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacAfee, A. W., and P. J. Bowyer, 2005: The modeling of trapped-fetch waves with tropical cyclones—A desktop operational model. Wea. Forecasting, 20, 245263, doi:10.1175/WAF850.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moon, I.-J., I. Ginis, T. Hara, H. L. Tolman, C. W. Wright, and E. J. Walsh, 2003: Numerical simulation of sea surface directional wave spectra under hurricane wind forcing. J. Phys. Oceanogr., 33, 16801706, doi:10.1175/2410.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 2006: Drag coefficient distribution and wind speed dependence in tropical cyclones. NOAA JHT Program Final Rep., 26 pp.

  • Powell, M. D., S. H. Houston, and T. A. Reinhold, 1996: Hurricane Andrew’s landfall in south Florida. Part I: Standardizing measurements for documentation of surface wind fields. Wea. Forecasting, 11, 304328, doi:10.1175/1520-0434(1996)011<0304:HALISF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283, doi:10.1038/nature01481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlichting, H., 1968: Boundary-Layer Theory. McGraw Hill, 748 pp.

  • Shemdin, O. H., 1980: Prediction of dominant wave properties ahead of hurricanes. Proc. 17th Coastal Eng. Conf., Sydney, Australia, ASCE, 600–609.

    • Crossref
    • Export Citation
  • Walsh, E. J., D. W. Hancock, D. E. Hines, R. N. Swift, and J. F. Scott, 1985: Directional wave spectra measured with the surface contour radar. J. Phys. Oceanogr., 15, 566592, doi:10.1175/1520-0485(1985)015<0566:DWSMWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, E. J., D. W. Hancock, D. E. Hines, R. N. Swift, and J. F. Scott, 1989: An observation of the directional wave spectrum evolution from shoreline to fully developed. J. Phys. Oceanogr., 19, 670690, doi:10.1175/1520-0485(1989)019<0670:AOOTDW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, C. W., and et al. , 2001: Hurricane directional wave spectrum spatial variation in the open ocean. J. Phys. Oceanogr., 31, 24722488, doi:10.1175/1520-0485(2001)031<2472:HDWSSV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., 1988: Parametric hurricane wave prediction model. J. Waterw. Port Coastal Ocean Eng., 114, 637652, doi:10.1061/(ASCE)0733-950X(1988)114:5(637).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., 1998: Observations of the spectra of hurricane generated waves. Ocean Eng., 25, 261276, doi:10.1016/S0029-8018(97)00011-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., 2003: A review of the sea state generated by hurricanes. Mar. Struct., 16, 201218, doi:10.1016/S0951-8339(02)00054-0.

  • Young, I. R., 2006: Directional spectra of hurricane wind waves. J. Geophys. Res., 111, C08020, doi:10.1029/2006JC003540.

  • Young, I. R., and G. P. Burchell, 1996: Hurricane generated waves as observed by satellite. Ocean Eng., 23, 761776, doi:10.1016/0029-8018(96)00001-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., and J. Vinoth, 2013: An “extended fetch” model for the spatial distribution of tropical cyclone wind–waves as observed by altimeter. Ocean Eng., 70, 1424, doi:10.1016/j.oceaneng.2013.05.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 143 143 28
PDF Downloads 126 126 26

Effective Fetch and Duration of Tropical Cyclone Wind Fields Estimated from Simultaneous Wind and Wave Measurements: Surface Wave and Air–Sea Exchange Computation

View More View Less
  • 1 Remote Sensing Division, Naval Research Laboratory, Washington, D.C.
  • | 2 Oceanography Division, Naval Research Laboratory, Stennis Space Center, Mississippi
© Get Permissions
Restricted access

Abstract

Simultaneous wind and wave measurements have been obtained inside tropical cyclones in several hurricane hunter missions. Analyses of these datasets show that the surface wave development inside hurricanes follows essentially the same duration- and fetch-limited growth functions established in steady wind forcing conditions. This paper explores the application of several parameterization functions of wind-wave systems to quantify the energy and momentum exchanges inside hurricanes from an initially limited input of the environmental parameters, such as the wind field alone. A critical prerequisite to applying the wind-wave growth functions is the knowledge of fetch and duration for the hurricane wind field. Four sets of simultaneous wind and wave measurements from hurricane hunter missions are analyzed to derive a fetch and duration scaling model. Time series of 2D hurricane wind fields can then be used to investigate the detailed spatial distribution and temporal evolution of the sea state parameters and the associated air–sea energy and momentum exchanges following the hurricane development.

U.S. Naval Research Laboratory Publication Number JA/7260—16-0146.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Dr. Paul A. Hwang, paul.hwang@nrl.navy.mil

Abstract

Simultaneous wind and wave measurements have been obtained inside tropical cyclones in several hurricane hunter missions. Analyses of these datasets show that the surface wave development inside hurricanes follows essentially the same duration- and fetch-limited growth functions established in steady wind forcing conditions. This paper explores the application of several parameterization functions of wind-wave systems to quantify the energy and momentum exchanges inside hurricanes from an initially limited input of the environmental parameters, such as the wind field alone. A critical prerequisite to applying the wind-wave growth functions is the knowledge of fetch and duration for the hurricane wind field. Four sets of simultaneous wind and wave measurements from hurricane hunter missions are analyzed to derive a fetch and duration scaling model. Time series of 2D hurricane wind fields can then be used to investigate the detailed spatial distribution and temporal evolution of the sea state parameters and the associated air–sea energy and momentum exchanges following the hurricane development.

U.S. Naval Research Laboratory Publication Number JA/7260—16-0146.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Dr. Paul A. Hwang, paul.hwang@nrl.navy.mil
Save