• Bunge, L., and A. J. Clarke, 2009: A verified estimation of the El Niño index Niño-3.4 since 1877. J. Climate, 22, 39793992, doi:10.1175/2009JCLI2724.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cane, M. A., and E. S. Sarachik, 1977: Forced baroclinic ocean motions. II. The linear equatorial bounded case. J. Mar. Res., 35, 395432.

    • Search Google Scholar
    • Export Citation
  • Chen, H.-C., Z.-Z. Hu, B. Huang, and C.-H. Sui, 2016: The role of reversed equatorial zonal transport in terminating an ENSO event. J. Climate, 29, 58595877, doi:10.1175/JCLI-D-16-0047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., 1983: The reflection of equatorial waves from oceanic boundaries. J. Phys. Oceanogr., 13, 11931207, doi:10.1175/1520-0485(1983)013<1193:TROEWF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., 1991: On the reflection and transmission of low-frequency energy at the irregular western Pacific Ocean boundary. J. Geophys. Res., 96, 32893305, doi:10.1029/90JC00985.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., 1992: Low-frequency reflection from a nonmeridional eastern ocean boundary and the use of coastal sea level to monitor eastern Pacific equatorial Kelvin waves. J. Phys. Oceanogr., 22, 163183, doi:10.1175/1520-0485(1992)022<0163:LFRFAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., 2008: An Introduction to the Dynamics of El Niño and the Southern Oscillation. Academic Press, 324 pp.

  • Clarke, A. J., 2010: Analytical theory for the quasi-steady and low-frequency equatorial ocean response to wind forcing: The ‘tilt’ and ‘warm water volume’ modes. J. Phys. Oceanogr., 40, 121137, doi:10.1175/2009JPO4263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., and S. Van Gorder, 1986: A method for estimating wind-driven frictional, time-dependent, stratified shelf and slope water flow. J. Phys. Oceanogr., 16, 10131028, doi:10.1175/1520-0485(1986)016<1013:AMFEWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., and S. Van Gorder, 2013: On fitting a straight line to data when the “noise” in both variables is unknown. J. Atmos. Oceanic Technol., 30, 151158, doi:10.1175/JTECH-D-12-00067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., and J. M. Wallace, 1990: Large-scale atmospheric circulation features of warm and cold episodes in the troika Pacific. J. Climate, 3, 12541281, doi:10.1175/1520-0442(1990)003<1254:LSACFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebisuzaki, W., 1997: A method to estimate the statistical significance of a correlation when the data are serially correlated. J. Climate, 10, 21472153, doi:10.1175/1520-0442(1997)010<2147:AMTETS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., 2010: Ocean response to wind variations, warm water volume, and simple models of ENSO in the low-frequency approximation. J. Climate, 23, 38553873, doi:10.1175/2010JCLI3044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., and A. J. Clarke, 1974: Wind-induced upwelling, coastal currents and sea-level changes. Deep-Sea Res. Oceanogr. Abstr., 21, 325345, doi:10.1016/0011-7471(74)90038-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997a: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811829, doi:10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997b: An equatorial ocean recharge paradigm for ENSO. Part II: A stripped-down coupled model. J. Atmos. Sci., 54, 830847, doi:10.1175/1520-0469(1997)054<0830:AEORPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., 1990: Observations of long Rossby waves in the northern tropical Pacific. J. Geophys. Res., 95, 51835217, doi:10.1029/JC095iC04p05183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., and A. J. Clarke, 2007: Interannual sea level variations in the South Pacific 5°–28°S. J. Phys. Oceanogr., 37, 28822894, doi:10.1175/2007JPO3656.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., 1981: A linear stratified ocean model of the equatorial undercurrent. Philos. Trans. Roy. Soc. London, A298, 603635, doi:10.1098/rsta.1981.0002.

    • Search Google Scholar
    • Export Citation
  • Meinen, C. S., and M. J. McPhaden, 2000: Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J. Climate, 13, 35513559, doi:10.1175/1520-0442(2000)013<3551:OOWWVC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyers, G., 1979: Annual variation in the slope of the 14°C isotherm along the equator in the Pacific Ocean. J. Phys. Oceanogr., 9, 885891, doi:10.1175/1520-0485(1979)009<0885:AVITSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagura, M., and M. J. McPhaden, 2010a: Wyrtki jet dynamics: Seasonal variability. J. Geophys. Res., 115, C07009, doi:10.1029/2009JC005922.

    • Search Google Scholar
    • Export Citation
  • Nagura, M., and M. J. McPhaden, 2010b: Dynamics of zonal current variations associated with the Indian Ocean dipole. J. Geophys. Res., 115, C11026, doi:10.1029/2010JC006423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Picaut, J., C. Menkes, J.-P. Boulanger, and Y. du Penhoat, 1993: Dissipation in a Pacific equatorial long-wave model. IRD TOGA Notes 10, 11–15.

  • Picaut, J., F. Masia, and Y. du Penhoat, 1997: An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science, 277, 663666, doi:10.1126/science.277.5326.663.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sturges, W., and B. G. Hong, 1995: Wind forcing of the Atlantic thermocline along 32°N at low frequencies. J. Phys. Oceanogr., 25, 17061715, doi:10.1175/1520-0485(1995)025<1706:WFOTAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1984: Signal versus noise in the Southern Oscillation. Mon. Wea. Rev., 112, 326332, doi:10.1175/1520-0493(1984)112<0326:SVNITS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, W. B., 1977: Annual forcing of baroclinic long waves in the tropical North Pacific Ocean. J. Phys. Oceanogr., 7, 5061, doi:10.1175/1520-0485(1977)007<0050:AFOBLW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, X., and M. J. McPhaden, 1999: Seasonal variability in the equatorial Pacific. J. Phys. Oceanogr., 29, 925947, doi:10.1175/1520-0485(1999)029<0925:SVITEP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 28 28 7
PDF Downloads 26 26 10

On the Dynamical Relationship between Equatorial Pacific Surface Currents, Zonally Averaged Equatorial Sea Level, and El Niño Prediction

View More View Less
  • 1 Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida
© Get Permissions
Restricted access

Abstract

Previous work has shown that for large zonal scales and low frequencies, wind-forced sea level, even near the equator, can be described by wind-forced long Rossby waves. In the eastern equatorial Pacific where the interannual wind forcing is small, these waves are essentially locally unforced and propagate westward from the boundary. At the boundary the waves’ sea level is in phase because of geostrophy and no normal flow to the boundary. However, because the waves propagate more slowly with increasing latitude, west of the boundary lag increases as latitude increases. Consequently a northward sea level gradient is like a time derivative, and the zonal geostrophic flow is like a time derivative of the sea level. This implies that the equatorial flow should lead the equatorial sea level by about 9 months on El Niño time scales. However, analysis shows that when dissipation of the large-scale flow is taken into account, this lead is reduced to about 3 months. This lead time is approximately the dissipation time scale of the second vertical mode, which dominates the zonal surface flow. Since the eastern equatorial Pacific sea level ηE is proportional to eastern equatorial thermocline displacement and El Niño, the zonal equatorial flow leads El Niño indices. Analysis also shows that the zonally averaged equatorial Pacific sea level leads El Niño and that this lead is associated with the geostrophic zonal velocity and the long Rossby wave physics.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Allan J. Clarke, aclarke@fsu.edu

Abstract

Previous work has shown that for large zonal scales and low frequencies, wind-forced sea level, even near the equator, can be described by wind-forced long Rossby waves. In the eastern equatorial Pacific where the interannual wind forcing is small, these waves are essentially locally unforced and propagate westward from the boundary. At the boundary the waves’ sea level is in phase because of geostrophy and no normal flow to the boundary. However, because the waves propagate more slowly with increasing latitude, west of the boundary lag increases as latitude increases. Consequently a northward sea level gradient is like a time derivative, and the zonal geostrophic flow is like a time derivative of the sea level. This implies that the equatorial flow should lead the equatorial sea level by about 9 months on El Niño time scales. However, analysis shows that when dissipation of the large-scale flow is taken into account, this lead is reduced to about 3 months. This lead time is approximately the dissipation time scale of the second vertical mode, which dominates the zonal surface flow. Since the eastern equatorial Pacific sea level ηE is proportional to eastern equatorial thermocline displacement and El Niño, the zonal equatorial flow leads El Niño indices. Analysis also shows that the zonally averaged equatorial Pacific sea level leads El Niño and that this lead is associated with the geostrophic zonal velocity and the long Rossby wave physics.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Allan J. Clarke, aclarke@fsu.edu
Save