• Adcroft, A., C. Hill, and J. Marshall, 1997: Representation of topography by shaved cells in a height coordinate ocean model. Mon. Wea. Rev., 125, 22932315, doi:10.1175/1520-0493(1997)125<2293:ROTBSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Agra, C., and D. Nof, 1993: Collision and separation of boundary currents. Deep-Sea Res., 40, 22592282, doi:10.1016/0967-0637(93)90103-A.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amante, C., and B. Eakins, 2009: ETOPO1 1 arc-minute global relief model: Procedures, data sources and analysis. NOAA Tech. Memo. NESDIS NGDC-24, accessed 11 October 2012, doi:10.7289/V5C8276M.

    • Crossref
    • Export Citation
  • Auer, S., 1987: Five-year climatological survey of the Gulf Stream system and its associated rings. J. Geophys. Res., 92, 11 70911 726, doi:10.1029/JC092iC11p11709.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Batchelor, G., 2000: An Introduction to Fluid Dynamics. 3rd ed. Cambridge University Press, 658 pp.

  • Bryan, F. O., M. Hecht, and R. Smith, 2007: Resolution convergence and sensitivity studies with North Atlantic circulation models. Part I: The western boundary current system. Ocean Modell., 16, 141159, doi:10.1016/j.ocemod.2006.08.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cane, M., V. Kamenkovitch, and A. Krupitsky, 1998: On the utility and disutility of JEBAR. J. Phys. Oceanogr., 28, 519526, doi:10.1175/1520-0485(1998)028<0519:OTUADO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J., 1955: The Gulf Stream as an inertial boundary layer. Proc. Natl. Acad. Sci. USA, 41, 731740, doi:10.1073/pnas.41.10.731.

  • Chassignet, E., and D. Marshall, 2008: Gulf Stream separation in numerical ocean models. Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 39–61.

    • Crossref
    • Export Citation
  • Dengg, J., 1993: The problem of Gulf Stream separation: A barotropic approach. J. Phys. Oceanogr., 23, 21822200, doi:10.1175/1520-0485(1993)023<2182:TPOGSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deremble, B., N. Wienders, and W. Dewar, 2013: CheapAML: A simple, atmospheric boundary layer model for use in ocean-only model calculations. Mon. Wea. Rev., 141, 809821, doi:10.1175/MWR-D-11-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ezer, T., 2016: Revisiting the problem of the Gulf Stream separation: On the representation of topography in ocean models with different types of vertical grids. Ocean Modell., 104, 1527, doi:10.1016/j.ocemod.2016.05.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ezer, T., and G. Mellor, 1992: A numerical study of the variability and separation of the Gulf Stream induced by surface atmospheric forcing and lateral boundary flows. J. Phys. Oceanogr., 22, 660682, doi:10.1175/1520-0485(1992)022<0660:ANSOTV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ezer, T., L. Atkinson, W. Corlett, and J. Blanco, 2013: Gulf Stream’s induced sea level rise and variability along the U.S. mid-Atlantic coast. J. Geophys. Res. Oceans, 118, 685697, doi:10.1002/jgrc.20091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gawarkiewicz, G. G., R. Todd, A. Plueddemann, M. Andres, and J. Manning, 2012: Direct interaction between the Gulf Stream and the shelfbreak south of New England. Sci. Rep., 2, 553, doi:10.1038/srep00553.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. McWilliams, 2015: Gulf Stream dynamics along the southeastern U.S. seaboard. J. Phys. Oceanogr., 45, 690715, doi:10.1175/JPO-D-14-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haidvogel, D., J. McWilliams, and P. Gent, 1992: Boundary current separation in a quasigeostrophic, eddy-resolving ocean circulation. J. Phys. Oceanogr., 22, 882902, doi:10.1175/1520-0485(1992)022<0882:BCSIAQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, N., and H. Stommel, 1985: On the relation between the deep circulation and the Gulf Stream. Deep-Sea Res., 32A, 11811193, doi:10.1016/0198-0149(85)90002-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, W., 1972: Baroclinic and topographic influences on the transport in western boundary currents. Geophys. Fluid Dyn., 4, 187210, doi:10.1080/03091927208236095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, R., 1986: On the role of criticality in coastal flows over irregular bottom topography. Dyn. Atmos. Oceans, 10, 129147, doi:10.1016/0377-0265(86)90003-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurlburt, H., and P. Hogan, 2008: The Gulf Stream pathway and the impacts of the eddy-driven abyssal circulation and the deep western boundary current. Dyn. Atmos. Oceans, 45, 71101, doi:10.1016/j.dynatmoce.2008.06.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurlburt, H., and et al. , 2011: Dynamical evaluation of ocean models using the Gulf Stream as an example. Operational Oceanography in the 21st Century, A. Schiller and G. B. Brassington, Eds., Springer, 545–609.

    • Crossref
    • Export Citation
  • Kenwright, D., C. Henze, and C. Levit, 1999: Feature extraction of separation and attachment lines. IEEE Trans. Visualization Comput. Graphics, 5, 135144, doi:10.1109/2945.773805.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W., J. McWilliams, and S. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lehoucq, R., and D. Sorensen, 1996: Deflation techniques for an implicitly restarted Arnoldi iteration. SIAM J. Matrix Anal. Appl., 17, 789821, doi:10.1137/S0895479895281484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, D., and C. Tansley, 2001: An implicit formula for boundary current separation. J. Phys. Oceanogr., 31, 16331638, doi:10.1175/1520-0485(2001)031<1633:AIFFBC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., C. Hill, L. Perelman, and A. Adcroft, 1997: Hydrostatic, quasi-hydrostatic, and non-hydrostatic ocean modelling. J. Geophys. Res., 102, 57335753, doi:10.1029/96JC02776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munday, D., and D. Marshall, 2005: On the separation of a barotropic western boundary current from a cape. J. Phys. Oceanogr., 35, 17261743, doi:10.1175/JPO2783.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olson, D. B., G. Podesta, R. Evans, and O. Brown, 1988: Temporal variations in the separation of the Brazil and Malvinas Currents. Deep-Sea Res., 35, 19711990, doi:10.1016/0198-0149(88)90120-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ozgokmen, T., E. Chassignet, and A. Paiva, 1997: Impact of wind forcing, bottom topographs, and inertia on midlatitude jet separation in a quasi-geostrophic model. J. Phys. Oceanogr., 27, 24602476, doi:10.1175/1520-0485(1997)027<2460:IOWFBT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parsons, A., 1969: A two-layer model of Gulf Stream separation. J. Fluid Mech., 39, 511528, doi:10.1017/S0022112069002308.

  • Pickart, R., 1994: Interaction of the Gulf Stream and deep western boundary current where they cross. J. Geophys. Res., 99, 25 15525 164, doi:10.1029/94JC02217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pickart, R., 1995: Gulf Stream–generated topographic Rossby waves. J. Phys. Oceanogr., 25, 574586, doi:10.1175/1520-0485(1995)025<0574:GSTRW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pickart, R., and W. Smethie, 1993: How does the deep western boundary current cross the Gulf Stream? J. Phys. Oceanogr., 23, 26022616, doi:10.1175/1520-0485(1993)023<2602:HDTDWB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saba, V., and et al. , 2016: Enhanced warming of the northwest Atlantic Ocean under climate change. J. Geophys. Res., 121, 118132, doi:10.1002/2015JC011346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sarkisyan, A., and V. Ivanov, 1971: Joint effect of baroclinicity and bottom relief as an important factor in the dynamics of sea currents. USSR Atmos. Oceanic Phys., 42, 173178.

    • Search Google Scholar
    • Export Citation
  • Schoonover, J., and et al. , 2016: North Atlantic barotropic vorticity balances in numerical models. J. Phys. Oceanogr., 46, 289303, doi:10.1175/JPO-D-15-0133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sedberry, G., J. McGovern, and O. Pashuk, 2001: The Charleston Bump: An island of essential fish habitat in the Gulf Stream. Amer. Fish. Soc. Symp., 25, 324.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A., and J. McWilliams, 2005: The Regional Ocean Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate ocean model. Ocean Modell., 9, 347404, doi:10.1016/j.ocemod.2004.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spall, M., 1996: Dynamics of the Gulf Stream/deep western boundary current crossover. Part I: Entrainment and recirculation. J. Phys. Oceanogr., 26, 21522168, doi:10.1175/1520-0485(1996)026<2152:DOTGSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, M., 1998: Separation of a density current from the bottom of a continental shelf. J. Phys. Oceanogr., 28, 20402049, doi:10.1175/1520-0485(1998)028<2040:SOADCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, M., and J. Whitehead, 1990: Separation of a boundary jet in a rotating fluid. J. Fluid Mech., 217, 4169, doi:10.1017/S0022112090000623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tansley, C., and D. Marshall, 2000: On the influence of bottom topography and the deep western boundary current on Gulf Stream separation. J. Mar. Res., 58, 297325, doi:10.1357/002224000321511179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, J., and W. Schmitz, 1989: A limited-area model of the Gulf Stream: Design, initial experiments, and model-data intercomparison. J. Phys. Oceanogr., 19, 791814, doi:10.1175/1520-0485(1989)019<0791:ALAMOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., and G. Vallis, 2007: The role of bottom vortex stretching on the path of the North Atlantic western boundary current and on the northern recirculation gyre. J. Phys. Oceanogr., 37, 20532080, doi:10.1175/JPO3102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 402 402 205
PDF Downloads 75 75 12

Local Sensitivities of the Gulf Stream Separation

View More View Less
  • 1 Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico
  • | 2 Department of Earth, Ocean, and Atmospheric Sciences, Florida State University, Tallahassee, Florida
© Get Permissions
Restricted access

Abstract

Robust and accurate Gulf Stream separation remains an unsolved problem in general circulation modeling whose resolution will positively impact the ocean and climate modeling communities. Oceanographic literature does not face a shortage of plausible hypotheses that attempt to explain the dynamics of the Gulf Stream separation, yet a single theory that the community agrees on is missing. In this paper, the authors investigate the impact of the deep western boundary current (DWBC), coastline curvature, and continental shelf steepening on the Gulf Stream separation within regional configurations of the Massachusetts Institute of Technology General Circulation Model. Artificial modifications to the regional bathymetry are introduced to investigate the sensitivity of the separation to each of these factors. Metrics for subsurface separation detection confirm the direct link between flow separation and the surface expression of the Gulf Stream in the Mid-Atlantic Bight. It is shown that the Gulf Stream separation and mean surface position are most sensitive to the continental slope steepening, consistent with a theory proposed by Melvin Stern in 1998. In contrast, the Gulf Stream separation exhibits minimal sensitivity to the presence of the DWBC and coastline curvature. The implications of these results to the development of a “separation recipe” for ocean modeling are discussed. This study concludes adequate topographic resolution is a necessary, but not sufficient, condition for proper Gulf Stream separation.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Los Alamos National Laboratory Publication Number LA-UR-16-25889.

Corresponding author e-mail: Joseph Schoonover, jschoonover@lanl.gov

Abstract

Robust and accurate Gulf Stream separation remains an unsolved problem in general circulation modeling whose resolution will positively impact the ocean and climate modeling communities. Oceanographic literature does not face a shortage of plausible hypotheses that attempt to explain the dynamics of the Gulf Stream separation, yet a single theory that the community agrees on is missing. In this paper, the authors investigate the impact of the deep western boundary current (DWBC), coastline curvature, and continental shelf steepening on the Gulf Stream separation within regional configurations of the Massachusetts Institute of Technology General Circulation Model. Artificial modifications to the regional bathymetry are introduced to investigate the sensitivity of the separation to each of these factors. Metrics for subsurface separation detection confirm the direct link between flow separation and the surface expression of the Gulf Stream in the Mid-Atlantic Bight. It is shown that the Gulf Stream separation and mean surface position are most sensitive to the continental slope steepening, consistent with a theory proposed by Melvin Stern in 1998. In contrast, the Gulf Stream separation exhibits minimal sensitivity to the presence of the DWBC and coastline curvature. The implications of these results to the development of a “separation recipe” for ocean modeling are discussed. This study concludes adequate topographic resolution is a necessary, but not sufficient, condition for proper Gulf Stream separation.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Los Alamos National Laboratory Publication Number LA-UR-16-25889.

Corresponding author e-mail: Joseph Schoonover, jschoonover@lanl.gov
Save