• Amante, C., and B. Eakins, 2009: ETOPO1 1 arc-minute global relief model: Procedures, data sources and analysis. NOAA Tech. Memo. NESDIS NGDC-24, 25 pp. [Available online at https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/docs/ETOPO1.pdf.]

  • Aref, H., 1984: Stirring by chaotic advection. J. Fluid Mech., 143, 121, doi:10.1017/S0022112084001233.

  • Arnold, V., 1965: Sur la topologie des écoulements stationnaires des fluides parfaits. C. R. Acad. Sci. Paris, 261, 1720.

  • Basher, R. E., and X. Zheng, 1995: Tropical cyclones in the southwest Pacific: Spatial patterns and relationships to Southern Oscillation and sea surface temperature. J. Climate, 8, 12491260, doi:10.1175/1520-0442(1995)008<1249:TCITSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berti, S., and G. Lapeyre, 2014: Lagrangian reconstructions of temperature and velocity in a model of surface ocean turbulence. Ocean Modell., 76, 5971, doi:10.1016/j.ocemod.2014.02.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, Y.-C., G.-Y. Chen, R.-S. Tseng, L. R. Centurioni, and P. C. Chu, 2012: Observed near-surface currents under high wind speeds. J. Geophys. Res., 117, C11026, doi:10.1029/2012JC007996.

    • Search Google Scholar
    • Export Citation
  • Chiang, T. L., C. R. Wu, and L. Y. Oey, 2011: Typhoon Kai-Tak: An ocean’s perfect storm. J. Phys. Oceanogr., 41, 221233, doi:10.1175/2010JPO4518.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Csanady, G. T., 2001: Air-Sea Interaction: Laws and Mechanisms. Cambridge University Press, 239 pp.

    • Crossref
    • Export Citation
  • D’Asaro, E. A., 2003: The ocean boundary layer below Hurricane Dennis. J. Phys. Oceanogr., 33, 561579, doi:10.1175/1520-0485(2003)033<0561:TOBLBH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., and et al. , 2014: Impact of typhoons on the ocean in the Pacific. Bull. Amer. Meteor. Soc., 95, 14051418, doi:10.1175/BAMS-D-12-00104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeCosmo, J., K. B. Katsaros, S. D. Smith, R. J. Anderson, W. A. Oost, K. Bumke, and H. Chadwick, 1996: Air-sea exchange of water vapor and sensible heat: The Humidity Exchange over the Sea (HEXOS) results. J. Geophys. Res., 101, 12 00112 016, doi:10.1029/95JC03796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowdy, A. J., L. Qi, and D. Jones, 2012: Tropical cyclone climatology of the South Pacific Ocean and its relationship to El Nino–Southern Oscillation. J. Climate, 25, 61086122, doi:10.1175/JCLI-D-11-00647.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2003: Tropical cyclones. Annu. Rev. Earth Planet. Sci., 31, 75104, doi:10.1146/annurev.earth.31.100901.141259.

  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, doi:10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, H., X. Wang, P. C. Chu, X. Zhang, G. Han, and W. Li, 2014: Tropical cyclone footprint in the ocean mixed layer observed by Argo in the northwest Pacific. J. Geophys. Res. Oceans, 119, 80788092, doi:10.1002/2014JC010316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., 1983: On the response of the ocean to a moving storm: The nonlinear dynamics. J. Phys. Oceanogr., 13, 357367, doi:10.1175/1520-0485(1983)013<0357:OTROTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henon, M., 1966: Sur la topologie des lignes de courant dans un cas particulier. C. R. Acad. Sci. Paris, 262, 312314.

  • Hormann, V., L. R. Centurioni, L. Rainville, C. M. Lee, and L. J. Braasch, 2014: Response of upper ocean currents to Typhoon Fanapi. Geophys. Res. Lett., 41, 39954003, doi:10.1002/2014GL060317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, P., T. B. Sanford, and J. Imberger, 2009: Heat and turbulent kinetic energy budgets for surface layer cooling induced by the passage of Hurricane Frances (2004). J. Geophys. Res, 114, C12023, doi:10.1029/2009JC005603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, L. A., 1952: On the low-level wind structure of tropical storms. J. Meteor., 9, 422428, doi:10.1175/1520-0469(1952)009<0422:OTLLSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacob, S. D., L. K. Shay, and A. J. Mariano, 2000: The 3D oceanic mixed layer response to Hurricane Gilbert. J. Phys. Oceanogr., 30, 14071429, doi:10.1175/1520-0485(2000)030<1407:TOMLRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jourdain, N. C., B. Barnier, N. Ferry, J. Vialard, C. E. Menkes, M. Lengaigne, and L. Parent, 2014: Tropical cyclones in two atmospheric (re)analyses and their response in two oceanic reanalyses. Ocean Modell., 73, 108122, doi:10.1016/j.ocemod.2013.10.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jullien, S., and et al. , 2012: Impact of tropical cyclones on the heat budget of the South Pacific Ocean. J. Phys. Oceanogr., 42, 18821906, doi:10.1175/JPO-D-11-0133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khakhar, D. V., H. Rising, and J. M. Ottino, 1986: An analysis of chaotic mixing in two model systems. J. Fluid Mech., 172, 419451, doi:10.1017/S0022112086001805.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone best track data. Bull. Amer. Meteor. Soc., 91, 363376, doi:10.1175/2009BAMS2755.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leipper, D. F., 1967: Observed ocean conditions and Hurricane Hilda, 1964. J. Atmos. Sci., 24, 182196, doi:10.1175/1520-0469(1967)024<0182:OOCAHH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I., and et al. , 2003: New evidence for enhanced ocean primary production triggered by tropical cyclone. Geophys. Res. Lett., 30, 1718, doi:10.1029/2003GL017141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lloyd, I. D., and G. A. Vecchi, 2011: Observational evidence of oceanic controls on hurricane intensity. J. Climate, 24, 11381153, doi:10.1175/2010JCLI3763.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morey, S. L., M. A. Bourassa, D. S. Dukhovskoy, and J. J. O’Brien, 2006: Modeling studies of the upper ocean response to a tropical cyclone. Ocean Dyn., 56, 594606, doi:10.1007/s10236-006-0085-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muller, P., and C. Garrett, 2002: From stirring to mixing in a stratified ocean. Oceanography, 15, 1219, doi:10.5670/oceanog.2002.10.

  • Murakami, H., 2014: Tropical cyclones in reanalysis data sets. Geophys. Res. Lett., 41, 21332141, doi:10.1002/2014GL059519.

  • Ottino, J. M., 1989: The Kinematics of Mixing: Stretching, Chaos, and Transport. Cambridge University Press, 364 pp.

  • Park, J. J., Y.-O. Kwon, and J. F. Price, 2011: Argo array observation of ocean heat content changes induced by tropical cyclones in the North Pacific. J. Geophys. Res., 116, C12025, doi:10.1029/2011JC007165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pearce, R. P., 1993: A critical review of progress in tropical cyclone physics including experimentation with numerical models. Proc. ICSU/WMO Int. Symp. on Tropical Disasters, Beijing, China, ICSU, 4559.

  • Price, J., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153175, doi:10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riehl, H., 1963: Some relations between wind and thermal structure of steady state hurricanes. J. Amer. Sci., 20, 276287, doi:10.1175/1520-0469(1963)020<0276:SRBWAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and W. B. Owens, 2000: The Argo project: Global ocean observations for understanding and prediction of climate variability. Oceanography, 13, 4550, doi:10.5670/oceanog.2000.33.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., 1992: Fluid exchange across a meandering jet. J. Phys. Oceanogr., 22, 431440, doi:10.1175/1520-0485(1992)022<0431:FEAAMJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shay, L. K., 2010: Air-sea interactions in tropical cyclones. Global Perspectives on Tropical Cyclones: From Science to Mitigation, J. C. L. Chan and J. D. Kepert, Eds., Vol. 4, World Scientific, 93–131.

    • Crossref
    • Export Citation
  • Vincent, E. M., M. Lengaigne, G. Madec, J. Vialard, G. Samson, N. Jourdaina, C. E. Menkes, and S. Jullien, 2012: Processes setting the characteristics of sea surface cooling induced by tropical cyclones. J. Geophys. Res., 117, C02020, doi:10.1029/2011JC007396.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2012: Recent research progress on tropical cyclone structure and intensity. Trop. Cyclone Res. Rev., 1, 254275.

  • Zamudio, L., E. Metzger, and P. Hogan, 2010: Gulf of California response to Hurricane Juliette. Ocean Modell., 33, 2032, doi:10.1016/j.ocemod.2009.11.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zedler, S. E., 2009: Simulations of the ocean response to a hurricane: Nonlinear processes. J. Phys. Oceanogr., 39, 26182634, doi:10.1175/2009JPO4062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., P. G. Black, J. R. French, and W. M. Drennan, 2008: First direct measurements of enthalpy flux in the hurricane boundary layer: The CBLAST results. Geophys. Res. Lett., 35, L14813, doi:10.1029/2008GL034374.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 64 64 19
PDF Downloads 45 45 15

Rapid Oceanic Response to Tropical Cyclone Oli (2010) over the South Pacific

View More View Less
  • 1 Department of Physics, Ecole Normale Supérieure, Paris, France
  • | 2 CRIOBE/USR 3278, CNRS-EPHE-UPVD, Moorea, Polynésie Française
  • | 3 Department of Mathematics and Applications, CNRS UMR 8553, Ecole Normale Supérieure, Paris, France
© Get Permissions
Restricted access

ABSTRACT

The effect of Tropical Cyclone Oli (2010) on the ocean is investigated using a variety of measurements. In situ temperature measurements on the cyclone track are available via the Centre de Recherches Insulaires et Observatoire de l’Environnement (CRIOBE) array of probes. This reflects an extreme fluctuation of the temperature some 18 h after the cyclone, lasting only 12 h and exceeding 3°C in amplitude. This study interprets this extreme fluctuation in terms of enhanced mixing associated with the time-dependent inertial currents due to the cyclonic winds. The authors show, using Lagrangian simulations, that this rapid event is compatible with the severe length-scale shortening observed in Lagrangian simulations.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Emmanuel Dormy, emmanuel.dormy@ens.fr

ABSTRACT

The effect of Tropical Cyclone Oli (2010) on the ocean is investigated using a variety of measurements. In situ temperature measurements on the cyclone track are available via the Centre de Recherches Insulaires et Observatoire de l’Environnement (CRIOBE) array of probes. This reflects an extreme fluctuation of the temperature some 18 h after the cyclone, lasting only 12 h and exceeding 3°C in amplitude. This study interprets this extreme fluctuation in terms of enhanced mixing associated with the time-dependent inertial currents due to the cyclonic winds. The authors show, using Lagrangian simulations, that this rapid event is compatible with the severe length-scale shortening observed in Lagrangian simulations.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Emmanuel Dormy, emmanuel.dormy@ens.fr
Save