On the Accuracy of Overturn-Based Estimates of Turbulent Dissipation at Rough Topography

Masoud Jalali Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California

Search for other papers by Masoud Jalali in
Current site
Google Scholar
PubMed
Close
,
Vamsi K. Chalamalla Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California

Search for other papers by Vamsi K. Chalamalla in
Current site
Google Scholar
PubMed
Close
, and
Sutanu Sarkar Department of Mechanical and Aerospace Engineering, University of California, San Diego, and Scripps Institute of Oceanography, La Jolla, California

Search for other papers by Sutanu Sarkar in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Evidence in support of overturn-based methods, often used to infer turbulent dissipation rate from density profiles, is typically from regions with weaker turbulence than that at rough-topography hotspots. The present work uses direct numerical simulations (DNS) of an idealized problem of sloping topography as well as high-resolution large-eddy simulation (LES) of turbulent flow at more realistic topography in order to investigate the accuracy of overturn-based methods in sites with internal wave breaking. Two methods are assessed: Thorpe sorting, where the overturn length LT is based on local distortion of measured density from the background, and inversion sorting, where the inversion length scale LI measures the statically unstable local region. The overturn boundaries are different between the two methods. Thorpe sorting leads to an order of magnitude overestimate of the turbulent dissipation in the DNS during large convective overturn events when inversion sorting is more accurate. The LES of steep, realistic topography leads to a similar conclusion of a substantial overestimate of dissipation by Thorpe sorting. Energy arguments explain the better performance of inversion sorting in convectively driven turbulence and the better performance of Thorpe sorting in shear-driven turbulence.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Sutanu Sarkar, sarkar@ucsd.edu

This article is included in the Ocean Turbulence Special Collection.

Abstract

Evidence in support of overturn-based methods, often used to infer turbulent dissipation rate from density profiles, is typically from regions with weaker turbulence than that at rough-topography hotspots. The present work uses direct numerical simulations (DNS) of an idealized problem of sloping topography as well as high-resolution large-eddy simulation (LES) of turbulent flow at more realistic topography in order to investigate the accuracy of overturn-based methods in sites with internal wave breaking. Two methods are assessed: Thorpe sorting, where the overturn length LT is based on local distortion of measured density from the background, and inversion sorting, where the inversion length scale LI measures the statically unstable local region. The overturn boundaries are different between the two methods. Thorpe sorting leads to an order of magnitude overestimate of the turbulent dissipation in the DNS during large convective overturn events when inversion sorting is more accurate. The LES of steep, realistic topography leads to a similar conclusion of a substantial overestimate of dissipation by Thorpe sorting. Energy arguments explain the better performance of inversion sorting in convectively driven turbulence and the better performance of Thorpe sorting in shear-driven turbulence.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Sutanu Sarkar, sarkar@ucsd.edu

This article is included in the Ocean Turbulence Special Collection.

Save
  • Akselvoll, K., and P. Moin, 1996: Large-eddy simulation of turbulent confined coannular jets. J. Fluid Mech., 315, 387411, doi:10.1017/S0022112096002479.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and Coauthors, 2011: Energy flux and dissipation in Luzon Strait: Two tales of two ridges. J. Phys. Oceanogr., 41, 22112222, doi:10.1175/JPO-D-11-073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armenio, V., and S. Sarkar, 2002: An investigation of stably stratified turbulent channel flow using large-eddy simulation. J. Fluid Mech., 459, 142, doi:10.1017/S0022112002007851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buijsman, M., S. Legg, and J. M. Klymak, 2012: Double-ridge internal tide interference and its effect on dissipation in Luzon Strait. J. Phys. Oceanogr., 42, 13371356, doi:10.1175/JPO-D-11-0210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chalamalla, V. K., and S. Sarkar, 2015: Mixing, dissipation rate, and their overturn-based estimates in a near-bottom turbulent flow driven by internal tides. J. Phys. Oceanogr., 45, 19691987, doi:10.1175/JPO-D-14-0057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crawford, W., 1986: A comparison of length scales and decay times of turbulence in stably stratified flows. J. Phys. Oceanogr., 16, 18471854, doi:10.1175/1520-0485(1986)016<1847:ACOLSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dillon, T. M., 1982: Vertical overturns: A comparison of Thorpe and Ozmidov length scales. J. Geophys. Res., 87, 96019613, doi:10.1029/JC087iC12p09601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dougherty, J. P., 1961: The anisotropy of turbulence at the meteor level. J. Atmos. Terr. Phys., 21, 210213, doi:10.1016/0021-9169(61)90116-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferron, B., H. Mercier, K. Speer, A. Gargett, and K. Polzin, 1998: Mixing in the Romanche Fracture Zone. J. Phys. Oceanogr., 28, 19291945, doi:10.1175/1520-0485(1998)028<1929:MITRFZ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foysi, H., and S. Sarkar, 2010: The compressible mixing layer: An LES study. Theor. Comput. Fluid Dyn., 24, 565588, doi:10.1007/s00162-009-0176-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galbraith, P. S., and D. E. Kelly, 1996: Identifying overturns in CTD profiles. J. Atmos. Oceanic Technol., 13, 688702, doi:10.1175/1520-0426(1996)013<0688:IOICP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gargett, A., and T. Garner, 2008: Determining Thorpe scales from ship-lowered CTD density profiles. J. Atmos. Oceanic Technol., 25, 16571670, doi:10.1175/2008JTECHO541.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Germano, M., P. M. U. Piomelli, and W. H. Cabot, 1991: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids, 3A, 17601765, doi:10.1063/1.857955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jalali, M., N. R. Rapaka, and S. Sarkar, 2014: Tidal flow over topography: Effect of excursion number on wave energetics and turbulence. J. Fluid Mech., 750, 259283, doi:10.1017/jfm.2014.258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., and Coauthors, 2006: An estimate of tidal energy lost to turbulence at the Hawaiian Ridge. J. Phys. Oceanogr., 36, 11481164, doi:10.1175/JPO2885.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., R. Pinkel, and L. Rainville, 2008: Direct breaking of the internal tide near topography: Kaena Ridge, Hawaii. J. Phys. Oceanogr., 38, 380399, doi:10.1175/2007JPO3728.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., K. L. Montgomery, K. L. Polzin, L. C. St. Laurent, R. W. Schmitt, and J. M. Toole, 2000: Evidence of enhanced mixing over rough topography in the abyssal ocean. Nature, 403, 179182, doi:10.1038/35003164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lund, T. S., 1997: On the use of discrete filters for large eddy simulation. Annual Research Briefs 1997, Center for Turbulence Research, 83–95. [Available online at https://web.stanford.edu/group/ctr/ResBriefs97/lund.pdf.]

  • Martin, M., U. Piomelli, and G. Candler, 2000: Subgrid-scale models for compressible large-eddy simulations. Theor. Comput. Fluid Dyn., 13, 361376, doi:10.1007/PL00020896.

    • Search Google Scholar
    • Export Citation
  • Mater, B. D., S. M. Schaad, and S. K. Venayagamoorthy, 2013: Relevance of the Thorpe length scale in stably stratified turbulence. Phys. Fluids, 25, 076604, doi:10.1063/1.4813809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mater, B. D., S. K. Venayagamoorthy, L. St. Laurent, and J. N. Moum, 2015: Biases in Thorpe-scale estimates of turbulence dissipation. Part I: Assessments from large-scale overturns in oceanographic data. J. Phys. Oceanogr., 45, 24972521, doi:10.1175/JPO-D-14-0128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J. N., 1996: Energy-containing scales of turbulence in the ocean thermocline. J. Geophys. Res., 101, 14 09514 109, doi:10.1029/96JC00507.

  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, doi:10.1016/S0967-0637(98)00070-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. D., and J. N. Moum, 2013: Shipboard LADCP/χpod profiling of internal wave structure and dissipation in the Luzon Strait. ONR Rep. N00014-09-1-0281, 12 pp.

    • Crossref
    • Export Citation
  • Ozmidov, R. V., 1965: On the turbulent exchange in a stably stratified ocean. Izv. Atmos. Oceanic Phys., 8, 853860.

  • Peters, H., M. C. Gregg, and J. M. Toole, 1988: On the parameterization of equatorial turbulence. J. Geophys. Res., 93, 11991218, doi:10.1029/JC093iC02p01199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pham, H. T., and S. Sarkar, 2014: Large eddy simulations of a stratified shear layer. J. Fluids Eng., 136, 060913, doi:10.1115/1.4026416.

  • Piomelli, U., 1993: High Reynolds number calculations using the dynamic subgrid-scale stress model. Phys. Fluids, 5A, 14841490, doi:10.1063/1.858586.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., J. M. Toole, J. R. Ledwell, and R. W. Schmitt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 9396, doi:10.1126/science.276.5309.93.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pope, S. B., 2000: Turbulent Flows. Cambridge University Press, 771 pp.

    • Crossref
    • Export Citation
  • Rapaka, N. R., B. Gayen, and S. Sarkar, 2013: Tidal conversion and turbulence at a model ridge: Direct and large eddy simulations. J. Fluid Mech., 715, 181209, doi:10.1017/jfm.2012.513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodi, W., J. H. Ferziger, M. Breuer, and M. Pourquiée, 1997: Status of large eddy simulation: Results of a workshop. J. Fluids Eng., 119, 248262, doi:10.1115/1.2819128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scotti, A., 2015: Biases in Thorpe-scale estimates of turbulence dissipation. Part II: Energetics arguments and turbulence simulations. J. Phys. Oceanogr., 45, 25222543, doi:10.1175/JPO-D-14-0092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. Part I: The basic experiment. Mon. Wea. Rev., 91, 99164, doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., J. N. Moum, and D. R. Caldwell, 2001: The efficiency of mixing in turbulent patches: Inferences from direct simulations and microstructure observations. J. Phys. Oceanogr., 31, 19691992, doi:10.1175/1520-0485(2001)031<1969:TEOMIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. C., J. M. Toole, and R. W. Schmitt, 2001: Buoyancy forcing by turbulence above rough topography in the abyssal Brazil Basin. J. Phys. Oceanogr., 31, 34763495, doi:10.1175/1520-0485(2001)031<3476:BFBTAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1977: Turbulence and mixing in a Scottish loch. Philos. Trans. Roy. Soc. London, A286, 125181, doi:10.1098/rsta.1977.0112.

    • Search Google Scholar
    • Export Citation
  • Vreman, B., B. Geurts, and H. Kuerten, 1997: Large eddy simulation of the turbulent mixing layer. J. Fluid Mech., 339, 357390, doi:10.1017/S0022112097005429.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wesson, J. C., and M. C. Gregg, 1994: Mixing at Camarial Sill in the strait of Gibraltar. J. Geophys. Res., 99, 98479878, doi:10.1029/94JC00256.

  • Wu, X., and K. Squires, 1998: Numerical investigation of the turbulent boundary layer over a bump. J. Fluid Mech., 362, 229271, doi:10.1017/S0022112098008982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314, doi:10.1146/annurev.fluid.36.050802.122121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zang, Y., R. L. Street, and J. R. Koseff, 1993: A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys. Fluids, 5A, 31863196, doi:10.1063/1.858675.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 977 358 64
PDF Downloads 358 93 8