Estimates of Surface Wind Stress and Drag Coefficients in Typhoon Megi

Je-Yuan Hsu Applied Physics Laboratory and School of Oceanography, University of Washington, Seattle, Washington

Search for other papers by Je-Yuan Hsu in
Current site
Google Scholar
PubMed
Close
,
Ren-Chieh Lien Applied Physics Laboratory and School of Oceanography, University of Washington, Seattle, Washington

Search for other papers by Ren-Chieh Lien in
Current site
Google Scholar
PubMed
Close
,
Eric A. D’Asaro Applied Physics Laboratory and School of Oceanography, University of Washington, Seattle, Washington

Search for other papers by Eric A. D’Asaro in
Current site
Google Scholar
PubMed
Close
, and
Thomas B. Sanford Applied Physics Laboratory and School of Oceanography, University of Washington, Seattle, Washington

Search for other papers by Thomas B. Sanford in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Estimates of drag coefficients beneath Typhoon Megi (2010) are calculated from roughly hourly velocity profiles of three EM-APEX floats, air launched ahead of the storm, and from air-deployed dropsondes measurements and microwave estimates of the 10-m wind field. The profiles are corrected to minimize contributions from tides and low-frequency motions and thus isolate the current induced by Typhoon Megi. Surface wind stress is computed from the linear momentum budget in the upper 150 m. Three-dimensional numerical simulations of the oceanic response to Typhoon Megi indicate that with small corrections, the linear momentum budget is accurate to 15% before the passage of the eye but cannot be applied reliably thereafter. Monte Carlo error estimates indicate that stress estimates can be made for wind speeds greater than 25 m s−1; the error decreases with greater wind speeds. Downwind and crosswind drag coefficients are computed from the computed stress and the mapped wind data. Downwind drag coefficients increase to 3.5 ± 0.7 × 10−3 at 31 m s−1, a value greater than most previous estimates, but decrease to 2.0 ± 0.4 × 10−3 for wind speeds > 45 m s−1, in agreement with previous estimates. The crosswind drag coefficient of 1.6 ± 0.5 × 10−3 at wind speeds 30–45 m s−1 implies that the wind stress is about 20° clockwise from the 10-m wind vector and thus not directly downwind, as is often assumed.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Je-Yuan Hsu, jyhsu@apl.washington.edu

Abstract

Estimates of drag coefficients beneath Typhoon Megi (2010) are calculated from roughly hourly velocity profiles of three EM-APEX floats, air launched ahead of the storm, and from air-deployed dropsondes measurements and microwave estimates of the 10-m wind field. The profiles are corrected to minimize contributions from tides and low-frequency motions and thus isolate the current induced by Typhoon Megi. Surface wind stress is computed from the linear momentum budget in the upper 150 m. Three-dimensional numerical simulations of the oceanic response to Typhoon Megi indicate that with small corrections, the linear momentum budget is accurate to 15% before the passage of the eye but cannot be applied reliably thereafter. Monte Carlo error estimates indicate that stress estimates can be made for wind speeds greater than 25 m s−1; the error decreases with greater wind speeds. Downwind and crosswind drag coefficients are computed from the computed stress and the mapped wind data. Downwind drag coefficients increase to 3.5 ± 0.7 × 10−3 at 31 m s−1, a value greater than most previous estimates, but decrease to 2.0 ± 0.4 × 10−3 for wind speeds > 45 m s−1, in agreement with previous estimates. The crosswind drag coefficient of 1.6 ± 0.5 × 10−3 at wind speeds 30–45 m s−1 implies that the wind stress is about 20° clockwise from the 10-m wind vector and thus not directly downwind, as is often assumed.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Je-Yuan Hsu, jyhsu@apl.washington.edu
Save
  • Bell, M. M., M. T. Montgomery, and K. A. Emanuel, 2012: Air–sea enthalpy and momentum exchange at major hurricane wind speeds observed during CBLAST. J. Atmos. Sci., 69, 31973222, doi:10.1175/JAS-D-11-0276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, P. G., and Coauthors, 2007: Air–sea exchange in hurricanes: Synthesis of observations from the Coupled Boundary Layer Air–Sea Transfer experiment. Bull. Amer. Meteor. Soc., 88, 357374, doi:10.1175/BAMS-88-3-357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charnock, H., 1955: Wind stress on a water surface. Quart. J. Roy. Meteor. Soc., 81, 639640, doi:10.1002/qj.49708135027.

  • Chen, S. S., W. Zhao, M. A. Donelan, and H. L. Tolman, 2013: Directional wind–wave coupling in fully coupled atmosphere–wave–ocean models: Results from CBLAST-Hurricane. J. Atmos. Sci., 70, 31983215, doi:10.1175/JAS-D-12-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., and Coauthors, 2014: Impact of typhoons on the ocean in the Pacific. Bull. Amer. Meteor. Soc., 95, 14051418, doi:10.1175/BAMS-D-12-00104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, doi:10.1029/2004GL019460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., H. C. Graber, and M. A. Donelan, 1999: Evidence for the effects of swell and unsteady winds on marine wind stress. J. Phys. Oceanogr., 29, 18531864, doi:10.1175/1520-0485(1999)029<1853:EFTEOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., H. C. Graber, D. Hauser, and C. Quentin, 2003: On the wave age dependence of wind stress over pure wind seas. J. Geophys. Res., 108, 8062, doi:10.1029/2000JC000715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dyer, A. J., 1974: A review of flux-profile relationships. Bound.-Layer Meteor., 7, 363372, doi:10.1007/BF00240838.

  • Edson, J. B., and Coauthors, 2013: On the exchange of momentum over the open ocean. J. Phys. Oceanogr., 43, 15891610, doi:10.1175/JPO-D-12-0173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976, doi:10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geernaert, G. L., 1988: Measurements of the angle between the wind vector and wind stress vector in the surface layer over the North Sea. J. Geophys. Res., 93, 82158220, doi:10.1029/JC093iC07p08215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1984: On the behavior of internal waves in the wakes of storms. J. Phys. Oceanogr., 14, 11291151, doi:10.1175/1520-0485(1984)014<1129:OTBOIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., C. W. Fairall, J. E. Hare, J. B. Edson, and S. D. Miller, 2003: Wind stress vector over ocean waves. J. Phys. Oceanogr., 33, 24082429, doi:10.1175/1520-0485(2003)033<2408:WSVOOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hock, T. F., and J. L. Franklin, 1999: The NCAR GPS dropwindsonde. Bull. Amer. Meteor. Soc., 80, 407420, doi:10.1175/1520-0477(1999)080<0407:TNGD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holthuijsen, L. H., M. D. Powell, and J. D. Pietrzak, 2012: Wind and waves in extreme hurricanes. J. Geophys. Res., 117, C09003, doi:10.1029/2012JC007983.

    • Search Google Scholar
    • Export Citation
  • Jarosz, E., D. A. Mitchell, D. W. Wang, and W. J. Teague, 2007: Bottom-up determination of air-sea momentum exchange under a major tropical cyclone. Science, 315, 17071709, doi:10.1126/science.1136466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, H. K., J. Højstrup, H. J. Vested, and S. E. Larsen, 1998: On the dependence of sea surface roughness on wind waves. J. Phys. Oceanogr., 28, 17021716, doi:10.1175/1520-0485(1998)028<1702:OTDOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324336, doi:10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lien, R.-C., T. B. Sanford, S. Jan, M.-H. Chang, and B. B. Ma, 2013: Internal tides on the East China Sea continental slope. J. Mar. Res., 71, 151185, doi:10.1357/002224013807343461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moon, I.-J., I. Ginis, and T. Hara, 2004: Effect of surface waves on air–sea momentum exchange. Part II: Behavior of drag coefficient under tropical cyclones. J. Atmos. Sci., 61, 23342348, doi:10.1175/1520-0469(2004)061<2334:EOSWOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potter, H., C. O. Collins, W. M. Drennan, and H. C. Graber, 2015: Observations of wind stress direction during Typhoon Chaba (2010). Geophys. Res. Lett., 42, 98989905, doi:10.1002/2015GL065173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283, doi:10.1038/nature01481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., R. A. Weller, and R. Pinkel, 1986: Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res., 91, 84118427, doi:10.1029/JC091iC07p08411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., T. B. Sanford, and G. Z. Forristall, 1994: Forced stage response to a moving hurricane. J. Phys. Oceanogr., 24, 233260, doi:10.1175/1520-0485(1994)024<0233:FSRTAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichl, B. G., T. Hara, and I. Ginis, 2014: Sea state dependence of the wind stress over the ocean under hurricane winds. J. Geophys. Res. Oceans, 119, 3051, doi:10.1002/2013JC009289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanford, T. B., R. G. Drever, and J. H. Dunlap, 1978: A velocity profiler based on the principles of geomagnetic induction. Deep-Sea Res., 25, 183210, doi:10.1016/0146-6291(78)90006-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanford, T. B., J. H. Dunlap, J. A. Carlson, D. C. Webb, and J. B. Girton, 2005: Autonomous velocity and density profiler: EM-APEX. Proc. IEEE/OES Eighth Working Conf. on Current Measurement Technology, 2005, Southampton, United Kingdom, IEEE, 152–156, doi:10.1109/CCM.2005.1506361.

    • Crossref
    • Export Citation
  • Sanford, T. B., J. F. Price, and J. B. Girton, 2011: Upper-ocean response to Hurricane Frances (2004) observed by profiling EM-APEX floats. J. Phys. Oceanogr., 41, 10411056, doi:10.1175/2010JPO4313.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwerdt, R. W., F. P. Ho, and R. R. Watkins, 1979: Meteorological criteria for standard project hurricane and probable maximum hurricane wind fields, Gulf and east coasts of the United States. NOAA Tech. Rep. NWS 23, 320 pp. [Available online at https://docs.lib.noaa.gov/noaa_documents/NWS/TR_NWS/TR_NWS_23.pdf.]

  • Smith, S. D., 1980: Wind stress and heat flux over the ocean in gale force winds. J. Phys. Oceanogr., 10, 709726, doi:10.1175/1520-0485(1980)010<0709:WSAHFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • UCAR/NCAR, 1993: NCAR Airborne Vertical Atmospheric Profiling System (AVAPS). UCAR/NCAR–Earth Observing Laboratory, accessed 30 October 2016, doi:10.5065/D66W9848.

    • Crossref
    • Export Citation
  • Uhlhorn, E. W., and P. G. Black, 2003: Verification of remotely sensed sea surface winds in Hurricanes. J. Atmos. Oceanic Technol., 20, 99116, doi:10.1175/1520-0426(2003)020<0099:VORSSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., and Y. Wang, 2014: A numerical study of Typhoon Megi (2010). Part I: Rapid intensification. Mon. Wea. Rev., 142, 2948, doi:10.1175/MWR-D-13-00070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., and Coauthors, 2005: Dropwindsonde Observations for Typhoon Surveillance near the Taiwan Region (DOTSTAR): An overview. Bull. Amer. Meteor. Soc., 86, 787790, doi:10.1175/BAMS-86-6-787.

    • Search Google Scholar
    • Export Citation
  • Zhang, F. W., W. M. Drennan, B. K. Haus, and H. C. Graber, 2009: On wind-wave-current interactions during the Shoaling Waves Experiment. J. Geophys. Res., 114, C01018, doi:10.1029/2008JC004998.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., and E. W. Uhlhorn, 2012: Hurricane sea surface inflow angle and an observation-based parametric model. Mon. Wea. Rev., 140, 35873605, doi:10.1175/MWR-D-11-00339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Z., 2014: Internal tide radiation from the Luzon Strait. J. Geophys. Res. Oceans, 119, 54345448, doi:10.1002/2014JC010014.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1503 233 15
PDF Downloads 1300 174 17