Recent Wind-Driven Variability in Atlantic Water Mass Distribution and Meridional Overturning Circulation

Dafydd Gwyn Evans National Oceanography Centre Southampton, University of Southampton, Southampton, United Kingdom

Search for other papers by Dafydd Gwyn Evans in
Current site
Google Scholar
PubMed
Close
,
John Toole Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by John Toole in
Current site
Google Scholar
PubMed
Close
,
Gael Forget Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Gael Forget in
Current site
Google Scholar
PubMed
Close
,
Jan D. Zika Department of Physics, and the Grantham Institute Climate Change and the Environment, Imperial College London, London, United Kingdom

Search for other papers by Jan D. Zika in
Current site
Google Scholar
PubMed
Close
,
Alberto C. Naveira Garabato National Oceanography Centre Southampton, University of Southampton, Southampton, United Kingdom

Search for other papers by Alberto C. Naveira Garabato in
Current site
Google Scholar
PubMed
Close
,
A. J. George Nurser National Oceanography Centre Southampton, Natural Environment Research Council, Southampton, United Kingdom

Search for other papers by A. J. George Nurser in
Current site
Google Scholar
PubMed
Close
, and
Lisan Yu Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Lisan Yu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Interannual variability in the volumetric water mass distribution within the North Atlantic Subtropical Gyre is described in relation to variability in the Atlantic meridional overturning circulation. The relative roles of diabatic and adiabatic processes in the volume and heat budgets of the subtropical gyre are investigated by projecting data into temperature coordinates as volumes of water using an Argo-based climatology and an ocean state estimate (ECCO version 4). This highlights that variations in the subtropical gyre volume budget are predominantly set by transport divergence in the gyre. A strong correlation between the volume anomaly due to transport divergence and the variability of both thermocline depth and Ekman pumping over the gyre suggests that wind-driven heave drives transport anomalies at the gyre boundaries. This wind-driven heaving contributes significantly to variations in the heat content of the gyre, as do anomalies in the air–sea fluxes. The analysis presented suggests that wind forcing plays an important role in driving interannual variability in the Atlantic meridional overturning circulation and that this variability can be unraveled from spatially distributed hydrographic observations using the framework presented here.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Dafydd Gwyn Evans, dafydd.evans@noc.soton.ac.uk

Abstract

Interannual variability in the volumetric water mass distribution within the North Atlantic Subtropical Gyre is described in relation to variability in the Atlantic meridional overturning circulation. The relative roles of diabatic and adiabatic processes in the volume and heat budgets of the subtropical gyre are investigated by projecting data into temperature coordinates as volumes of water using an Argo-based climatology and an ocean state estimate (ECCO version 4). This highlights that variations in the subtropical gyre volume budget are predominantly set by transport divergence in the gyre. A strong correlation between the volume anomaly due to transport divergence and the variability of both thermocline depth and Ekman pumping over the gyre suggests that wind-driven heave drives transport anomalies at the gyre boundaries. This wind-driven heaving contributes significantly to variations in the heat content of the gyre, as do anomalies in the air–sea fluxes. The analysis presented suggests that wind forcing plays an important role in driving interannual variability in the Atlantic meridional overturning circulation and that this variability can be unraveled from spatially distributed hydrographic observations using the framework presented here.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Dafydd Gwyn Evans, dafydd.evans@noc.soton.ac.uk
Save
  • Anderson, D. L., and A. Gill, 1975: Spin-up of a stratified ocean, with applications to upwelling. Deep-Sea Res. Oceanogr. Abstr., 22, 583596, doi:10.1016/0011-7471(75)90046-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andres, M., Y.-O. Kwon, and J. Yang, 2011: Observations of the Kuroshio’s barotropic and baroclinic responses to basin-wide wind forcing. J. Geophys. Res., 116, C04011, doi:10.1029/2010JC006863.

    • Search Google Scholar
    • Export Citation
  • Andres, M., J. Yang, and Y.-O. Kwon, 2012: Adjustment of a wind-driven two-layer system with mid-basin topography. J. Mar. Res., 70, 851882, doi:10.1357/002224012806770946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., B. A. King, G. D. McCarthy, and E. L. McDonagh, 2014: Impact of a 30% reduction in Atlantic meridional overturning during 2009–2010. Ocean Sci., 10, 683691, doi:10.5194/os-10-683-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckley, M. W., R. M. Ponte, G. Forget, and P. Heimbach, 2014: Low-frequency SST and upper-ocean heat content variability in the North Atlantic. J. Climate, 27, 49965018, doi:10.1175/JCLI-D-13-00316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunningham, S. A., and Coauthors, 2013: Atlantic meridional overturning circulation slowdown cooled the subtropical ocean. Geophys. Res. Lett., 40, 62026207, doi:10.1002/2013GL058464.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doddridge, E. W., D. P. Marshall, and A. M. Hogg, 2016: Eddy cancellation of the Ekman cell in subtropical gyres. J. Phys. Oceanogr., 46, 29953010, doi:10.1175/JPO-D-16-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, D. G., J. D. Zika, A. C. Naveira Garabato, and A. J. G. Nurser, 2014: The imprint of Southern Ocean overturning on seasonal water mass variability in Drake Passage. J. Geophys. Res. Oceans, 119, 79878010, doi:10.1002/2014JC010097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and D. Ferreira, 2011: What processes drive the ocean heat transport. Ocean Modell., 38, 171186, doi:10.1016/j.ocemod.2011.02.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forget, G., and R. M. Ponte, 2015: The partition of regional sea level variability. Prog. Oceanogr., 137A, 173195, doi:10.1016/j.pocean.2015.06.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forget, G., G. Maze, M. Buckley, and J. Marshall, 2011: Estimated seasonal cycle of North Atlantic Eighteen Degree Water volume. J. Phys. Oceanogr., 41, 269286, doi:10.1175/2010JPO4257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forget, G., J.-M. Campin, P. Heimbach, C. N. Hill, R. M. Ponte, and C. Wunsch, 2015a: ECCO version 4: An integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci. Model Dev., 8, 30713104, doi:10.5194/gmd-8-3071-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forget, G., D. Ferreira, and X. Liang, 2015b: On the observability of turbulent transport rates by Argo: Supporting evidence from an inversion experiment. Ocean Sci., 11, 839853, doi:10.5194/os-11-839-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Häkkinen, S., P. B. Rhines, and D. L. Worthen, 2011: Warm and saline events embedded in the meridional circulation of the northern North Atlantic. J. Geophys. Res., 116, C03006, doi:10.1029/2010JC006275.

    • Search Google Scholar
    • Export Citation
  • IOC, SCOR, and IAPSO, 2010: The International Thermodynamic Equation of Seawater—2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides 56, 220 pp. [Available online at http://www.teos-10.org/pubs/TEOS-10_Manual.pdf.]

  • Johns, W. E., and Coauthors, 2011: Continuous, array-based estimates of Atlantic Ocean heat transport at 26.5°N. J. Climate, 24, 24292449, doi:10.1175/2010JCLI3997.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, H. L., and D. P. Marshall, 2002: A theory for the surface Atlantic response to thermohaline variability. J. Phys. Oceanogr., 32, 11211132, doi:10.1175/1520-0485(2002)032<1121:ATFTSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maidens, A., A. Arribas, A. A. Scaife, C. MacLachlan, D. Peterson, and J. Knight, 2013: The influence of surface forcings on prediction of the North Atlantic oscillation regime of winter 2010/11. Mon. Wea. Rev., 141, 38013813, doi:10.1175/MWR-D-13-00033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCarthy, G., and Coauthors, 2012: Observed interannual variability of the Atlantic meridional overturning circulation at 26.5°N. Geophys. Res. Lett., 39, L19609, doi:10.1029/2012GL052933.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, M. D., and K. Haines, 2009: Estimating oceanic heat content change using isotherms. J. Climate, 22, 49534969, doi:10.1175/2009JCLI2823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polo, I., J. Robson, R. Sutton, and M. A. Balmaseda, 2014: The importance of wind and buoyancy forcing for the boundary density variations and the geostrophic component of the AMOC at 26°N. J. Phys. Oceanogr., 44, 23872408, doi:10.1175/JPO-D-13-0264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R., N. Rayner, T. Smith, D. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, C. D., and Coauthors, 2013: Atmosphere drives recent interannual variability of the Atlantic meridional overturning circulation at 26.5°N. Geophys. Res. Lett., 40, 51645170, doi:10.1002/grl.50930.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and J. Gilson, 2009: The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo program. Prog. Oceanogr., 82, 81100, doi:10.1016/j.pocean.2009.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schloesser, F., R. Furue, J. McCreary, and A. Timmermann, 2014: Dynamics of the Atlantic meridional overturning circulation. Part 2: Forcing by winds and buoyancy. Prog. Oceanogr., 120, 154176, doi:10.1016/j.pocean.2013.08.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smeed, D., G. McCarthy, D. Rayner, B. Moat, W. Johns, M. Baringer, and C. Meinen, 2015: Atlantic meridional overturning circulation observed by the RAPID-MOCHA-WBTS array at 26N from 2004 to 2014. British Oceanographic Data Centre, accessed 2 November 2015, doi:10.5285/1a774e53-7383-2e9a-e053-6c86abc0d8c7.

    • Crossref
    • Export Citation
  • Sonnewald, M., J. J.-M. Hirschi, R. Marsh, E. L. McDonagh, and B. A. King, 2013: Atlantic meridional ocean heat transport at 26°N: Impact on subtropical ocean heat content variability. Ocean Sci., 9, 10571069, doi:10.5194/os-9-1057-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Speer, K., 1993: Conversion among North Atlantic surface water types. Tellus, 45A, 7279, doi:10.1034/j.1600-0870.1993.00006.x.

  • Speer, K., and G. Forget, 2013: Global distribution and formation of mode waters. Ocean Circulation and Climate: A 21st Century Perspective, G. Siedler et al., Eds., International Geophysics Series, Vol. 103, Academic Press, 211–226, doi:10.1016/B978-0-12-391851-2.00009-X.

    • Crossref
    • Export Citation
  • Talley, L. D., 2013: Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: Schematics and transports. Oceanography, 26, 8097, doi:10.5670/oceanog.2013.07.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14, 34333443, doi:10.1175/1520-0442(2001)014<3433:EOMAAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walin, G., 1982: On the relation between sea-surface heat flow and thermal circulation in the ocean. Tellus, 34, 187195, doi:10.1111/j.2153-3490.1982.tb01806.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willebrand, J., G. H. Philander, and R. C. Pacanowski, 1980: The oceanic response to large-scale atmospheric disturbances. J. Phys. Oceanogr., 10, 411429, doi:10.1175/1520-0485(1980)010<0411:TORTLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, R. G., V. Roussenov, D. Smith, and M. S. Lozier, 2014: Decadal evolution of ocean thermal anomalies in the North Atlantic: The effects of Ekman, overturning, and horizontal transport. J. Climate, 27, 698719, doi:10.1175/JCLI-D-12-00234.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and P. Heimbach, 2013: Two decades of the Atlantic meridional overturning circulation: Anatomy, variations, extremes, prediction, and overcoming its limitations. J. Climate, 26, 71677186, doi:10.1175/JCLI-D-12-00478.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., 2015: Local and remote wind stress forcing of the seasonal variability of the Atlantic meridional overturning circulation (AMOC) transport at 26.5°N. J. Geophys. Res. Oceans, 120, 24882503, doi:10.1002/2014JC010317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., and X. Jin, 2014: Insights on the OAFlux ocean surface vector wind analysis merged from scatterometers and passive microwave radiometers (1987 onward). J. Geophys. Res. Oceans, 119, 52445269, doi:10.1002/2013JC009648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., X. Jin, and R. A. Weller, 2006: Role of net surface heat flux in seasonal variations of sea surface temperature in the tropical Atlantic Ocean. J. Climate, 19, 61536169, doi:10.1175/JCLI3970.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zika, J. D., N. Skliris, A. J. G. Nurser, S. A. Josey, L. Mudryk, F. Laliberté, and R. Marsh, 2015: Maintenance and broadening of the ocean’s salinity distribution by the water cycle. J. Climate, 28, 95509560, doi:10.1175/JCLI-D-15-0273.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 682 306 72
PDF Downloads 408 125 11