Observations of Surface Wave–Current Interaction

Leonel Romero Earth Research Institute, University of California, Santa Barbara, Santa Barbara, California

Search for other papers by Leonel Romero in
Current site
Google Scholar
PubMed
Close
,
Luc Lenain Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Luc Lenain in
Current site
Google Scholar
PubMed
Close
, and
W. Kendall Melville Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by W. Kendall Melville in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Wave–current interaction can result in significant inhomogeneities of the ocean surface wave field, including modulation of the spectrum, wave breaking rates, and wave statistics. This study presents novel airborne observations from two experiments: 1) the High-Resolution Air–Sea Interaction (HiRes) experiment, with measurements across an upwelling jet off the coast of Northern California, and 2) an experiment in the Gulf of Mexico with measurements of waves interacting with the Loop Current and associated eddies. The significant wave height and slope varies by up to 30% because of these interactions at both sites, whereas whitecap coverage varies by more than an order of magnitude. Whitecap coverage is well correlated with spectral moments, negatively correlated with the directional spreading, and positively correlated with the saturation. Surface wave statistics measured in the Gulf of Mexico, including wave crest heights and lengths of crests per unit surface area, show good agreement with second-order nonlinear approximations, except over a focal area. Similarly, distributions of wave heights are generally bounded by the generalized Boccotti distribution, except at focal regions where the wave height distribution reaches the Rayleigh distribution with a maximum wave height of 2.55 times the significant wave height, which is much larger than the standard classification for extreme waves. However, theoretical distributions of spatial statistics that account for second-order nonlinearities approximately bound the observed statistics of extreme wave elevations. The results are discussed in the context of improved models of breaking and related air–sea fluxes.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Leonel Romero, leromero@eri.ucsb.edu

Abstract

Wave–current interaction can result in significant inhomogeneities of the ocean surface wave field, including modulation of the spectrum, wave breaking rates, and wave statistics. This study presents novel airborne observations from two experiments: 1) the High-Resolution Air–Sea Interaction (HiRes) experiment, with measurements across an upwelling jet off the coast of Northern California, and 2) an experiment in the Gulf of Mexico with measurements of waves interacting with the Loop Current and associated eddies. The significant wave height and slope varies by up to 30% because of these interactions at both sites, whereas whitecap coverage varies by more than an order of magnitude. Whitecap coverage is well correlated with spectral moments, negatively correlated with the directional spreading, and positively correlated with the saturation. Surface wave statistics measured in the Gulf of Mexico, including wave crest heights and lengths of crests per unit surface area, show good agreement with second-order nonlinear approximations, except over a focal area. Similarly, distributions of wave heights are generally bounded by the generalized Boccotti distribution, except at focal regions where the wave height distribution reaches the Rayleigh distribution with a maximum wave height of 2.55 times the significant wave height, which is much larger than the standard classification for extreme waves. However, theoretical distributions of spatial statistics that account for second-order nonlinearities approximately bound the observed statistics of extreme wave elevations. The results are discussed in the context of improved models of breaking and related air–sea fluxes.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Leonel Romero, leromero@eri.ucsb.edu
Save
  • Alkhalidi, M. A., and M. A. Tayfun, 2013: Generalized Boccotti distribution for nonlinear wave heights. Ocean Eng., 74, 101106, doi:10.1016/j.oceaneng.2013.09.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., and Coauthors, 2010: Semiempirical dissipation source functions for ocean waves. Part I: Definition, calibration, and validation. J. Phys. Oceanogr., 40, 19171941, doi:10.1175/2010JPO4324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., and Coauthors, 2012: Numerical wave modeling in conditions with strong currents: Dissipation, refraction, and relative wind. J. Phys. Oceanogr., 42, 21012120, doi:10.1175/JPO-D-11-0220.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banner, M. L., and W. L. Peirson, 2007: Wave breaking onset and strength for two-dimensional deep-water wave groups. J. Fluid Mech., 585, 93115, doi:10.1017/S0022112007006568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banner, M. L., and R. P. Morison, 2010: Refined source terms in wind wave models with explicit wave breaking prediction. Part I: Model framework and validation against field data. Ocean Modell., 33, 177189, doi:10.1016/j.ocemod.2010.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banner, M. L., J. R. Gemmrich, and D. M. Farmer, 2002: Multiscale measurements of ocean wave breaking probability. J. Phys. Oceanogr., 32, 33643375, doi:10.1175/1520-0485(2002)032<3364:MMOOWB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banner, M. L., X. Barthelemy, F. Francesco, M. Allis, A. Benetazzo, F. Dias, and W. L. Peirson, 2014: Linking reduced breaking crest speeds to unsteady nonlinear water wave group behavior. Phys. Rev. Lett., 112, 114502, doi:10.1103/PhysRevLett.112.114502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barbariol, F., A. Benetazzo, S. Carniel, and M. Sclavo, 2015: Space–time wave extremes: The role of Metocean forcings. J. Phys. Oceanogr., 45, 18971916, doi:10.1175/JPO-D-14-0232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benetazzo, A., F. Barbariol, F. Bergamasco, A. Torsello, S. Carniel, and M. Sclavo, 2015: Observation of extreme sea waves in a space–time ensemble. J. Phys. Oceanogr., 45, 22612275, doi:10.1175/JPO-D-15-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., R. E. Davis, and C. B. Fandry, 1976: A technique for objective analysis and design of oceanographic experiments applied to MODE-73. Deep-Sea Res. Oceanogr. Abstr., 23, 559582, doi:10.1016/0011-7471(76)90001-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. H. Freilich, J. M. Sienkiewicz, and J. M. Von Ahn, 2006: On the use of QuikSCAT scatterometer measurements of surface winds for marine weather prediction. Mon. Wea. Rev., 134, 20552071, doi:10.1175/MWR3179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, D. B., L. Lenain, F. Feddersen, E. Boss, and R. T. Guza, 2014: Aerial imaging of fluorescent dye in the near shore. J. Atmos. Oceanic Technol., 31, 14101421, doi:10.1175/JTECH-D-13-00230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1985: Objective mapping by least squares fitting. J. Geophys. Res., 90, 47734777, doi:10.1029/JC090iC03p04773.

  • Denman, K. L., and H. J. Freeland, 1985: Correlation scales, objective mapping and a statistical test of geostrophy over the continental shelf. J. Mar. Res., 43, 517539, doi:10.1357/002224085788440402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dysthe, K., 2001: Refraction of gravity waves by weak current gradients. J. Fluid Mech., 442, 157159, doi:10.1017/S0022112001005237.

  • Dysthe, K., H. E. Krogstad, and P. Müller, 2008: Oceanic rogue waves. Annu. Rev. Fluid Mech., 40, 287310, doi:10.1146/annurev.fluid.40.111406.102203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farmer, D. M., C. L. McNeil, and B. D. Johnson, 1993: Evidence for the importance of bubbles in increasing air–sea gas flux. Nature, 361, 620623, doi:10.1038/361620a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fedele, F., 2012: Space–time extremes in short-crested storm seas. J. Phys. Oceanogr., 42, 16011615, doi:10.1175/JPO-D-11-0179.1.

  • Fedele, F., A. Benetazzo, G. Gallego, P. C. Shih, A. Yezzi, F. Barbariol, and F. Ardhuin, 2013: Space–time measurements of oceanic sea states. Ocean Modell., 70, 103115, doi:10.1016/j.ocemod.2013.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friehe, C. A., and Coauthors, 1991: Air‐sea fluxes and surface layer turbulence around a sea surface temperature front. J. Geophys. Res., 96, 85938609, doi:10.1029/90JC02062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallet, B., and W. R. Young, 2014: Refraction of swell by surface currents. J. Mar. Res., 72, 105126, doi:10.1357/002224014813758959.

  • Gordon, H. R., 1997: Atmospheric correction of ocean color imagery in the Earth Observing System era. J. Geophys. Res., 102, 17 08117 106, doi:10.1029/96JD02443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grare, L., L. Lenain, and W. K. Melville, 2013: Wave-coherent airflow and critical layers over ocean waves. J. Phys. Oceanogr., 43, 21562172, doi:10.1175/JPO-D-13-056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haus, B. K., 2007: Surface current effects on the fetch‐limited growth of wave energy. J. Geophys. Res., 112, C03003, doi:10.1029/2006JC003924.

    • Search Google Scholar
    • Export Citation
  • Henry, W., 1979: Aspects of the fate of cold fronts in the Gulf of Mexico. Mon. Wea. Rev., 107, 10781082, doi:10.1175/1520-0493(1979)107<1078:SAOTFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Z.-C., B. D. Reineman, L. Lenain, W. K. Melville, and J. H. Middleton, 2012: Airborne lidar measurements of wave energy dissipation in a coral reef lagoon system. J. Geophys. Res., 117, C03016, doi:10.1029/2011JC007203.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 2005: Altimeter measurements of wind and wave modulation by the Kuroshio in the Yellow and East China Seas. J. Oceanogr., 61, 987993, doi:10.1007/s10872-006-0015-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., D. W. Wang, E. J. Walsh, W. B. Krabill, and R. N. Swift, 2000a: Airborne measurements of the wavenumber spectra of ocean surface waves. Part I: Spectral slope and dimensionless spectral coefficient. J. Phys. Oceanogr., 30, 27532767, doi:10.1175/1520-0485(2001)031<2753:AMOTWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., D. W. Wang, E. J. Walsh, W. B. Krabill, and R. N. Swift, 2000b: Airborne measurements of the wavenumber spectra of ocean surface waves. Part II: Directional distribution. J. Phys. Oceanogr., 30, 27682787, doi:10.1175/1520-0485(2001)031<2768:AMOTWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janssen, T., and T. Herbers, 2009: Nonlinear wave statistics in a focal zone. J. Phys. Oceanogr., 39, 19481964, doi:10.1175/2009JPO4124.1.

  • Jury, M. R., 1994: A thermal front within the marine atmospheric boundary layer over the Agulhas Current south of Africa: Composite aircraft observations. J. Geophys. Res. Oceans, 99, 32973304, doi:10.1029/93JC02400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, D. M., and J. Largier, 2006: HF radar-derived origin and destination of surface waters off Bodega Bay, California. Deep-Sea Res. II, 53, 29062930, doi:10.1016/j.dsr2.2006.07.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, D. M., J. Largier, and L. W. Botsford, 2005: HF radar observations of surface circulation off Bodega Bay (Northern California, USA). J. Geophys. Res., 110, 125, doi:10.1029/2005JC002959.

    • Search Google Scholar
    • Export Citation
  • Kenyon, K. E., 1971: Wave refraction in ocean currents. Deep-Sea Res. Oceanogr. Abstr., 18, 10231034, doi:10.1016/0011-7471(71)90006-4.

  • Kenyon, K. E., and D. Sheres, 2006: Wave force on an ocean current. J. Phys. Oceanogr., 36, 212221, doi:10.1175/JPO2844.1.

  • Kleiss, J. M., and W. K. Melville, 2010: Observations of wave breaking kinematics in fetch-limited seas. J. Phys. Oceanogr., 40, 25752604, doi:10.1175/2010JPO4383.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleiss, J. M., and W. K. Melville, 2011: The analysis of sea surface imagery for whitecap kinematics. J. Atmos. Oceanic Technol., 28, 219243, doi:10.1175/2010JTECHO744.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krabill, W., and C. Martin, 1987: Aircraft positioning using global positioning system carrier phase data. J. Inst. Navig., 34, 121, doi:10.1002/j.2161-4296.1987.tb01487.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kudryavtsev, V. N., S. A. Grodsky, V. A. Dulov, and A. N. Bol’shakov, 1995: Observations of wind waves in the Gulf Stream frontal zone. J. Geophys. Res., 100, 20 71520 727, doi:10.1029/95JC00425.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kudryavtsev, V. N., D. Akimov, J. Johannessen, and B. Chapron, 2005: On radar imaging of current features: 1. Model and comparison with observations. J. Geophys. Res., 110, C07016, doi:10.1029/2004JC002505.

    • Search Google Scholar
    • Export Citation
  • Lenain, L., and W. K. Melville, 2017: Evidence of sea-state dependence of aerosol concentration in the marine atmospheric boundary layer. J. Phys. Oceanogr., 47, 6984, doi:10.1175/JPO-D-16-0058.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loewen, M., 2002: Inside whitecaps. Nature, 418, 830, doi:10.1038/418830a.

  • Longuet-Higgins, M. S., 1957: The statistical analysis of a random, moving surface. Philos. Trans. Roy. Soc. London, A249, 321387, doi:10.1098/rsta.1957.0002.

    • Search Google Scholar
    • Export Citation
  • Masson, D., 1996: A case study of wave–current interaction in a strong tidal current. J. Phys. Oceanogr., 26, 359372, doi:10.1175/1520-0485(1996)026<0359:ACSOWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mathiesen, M., 1987: Wave refraction by a current whirl. J. Geophys. Res., 92, 39053912, doi:10.1029/JC092iC04p03905.

  • McWilliams, J. C., 2016: Submesoscale currents in the ocean. Proc. Roy. Soc., A472, 20160117, doi:10.1098/rspa.2016.0117.

  • McWilliams, J. C., J. M. Restrepo, and E. M. Lane, 2004: An asymptotic theory for the interaction of waves and currents in coastal waters. J. Fluid Mech., 511, 135178, doi:10.1017/S0022112004009358.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., J. Gula, M. J. Molemaker, L. Renault, and A. F. Shchepetkin, 2015: Filament frontogenesis by boundary layer turbulence. J. Phys. Oceanogr., 45, 19882005, doi:10.1175/JPO-D-14-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melville, W. K., L. Romero, and J. M. Kleiss, 2005: Extreme wave events in the Gulf of Tehuantepec. Rogue Waves: Proc. 14th ‘Aha Huliko‘a Hawaiian Winter Workshop, University of Hawai‘i at Mānoa, Honolulu, Hawaii, 23–28.

  • Melville, W. K., L. Lenain, D. R. Cayan, M. Kahru, J. P. Kleissl, P. Linden, and N. M. Statom, 2016: The Modular Aerial Sensing System. J. Atmos. Oceanic Technol., 33, 11691184, doi:10.1175/JTECH-D-15-0067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, K. D., K. J. Voss, and H. R. Gordon, 2000: Spectral reflectance of whitecaps: Their contribution to water-leaving radiance. J. Geophys. Res., 105, 64936499, doi:10.1029/1999JC900334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, N., and P. A. E. M. Janssen, 2006: On kurtosis and occurrence probability of freak waves. J. Phys. Oceanogr., 36, 14711483, doi:10.1175/JPO2922.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W. H., G. R. Miller, F. E. Snodgrass, and N. F. Barber, 1963: Directional recording of swell from distant storms. Philos. Trans. Roy. Soc. London, A255, 505584, doi:10.1098/rsta.1963.0011.

    • Search Google Scholar
    • Export Citation
  • Munk, W. H., L. Armi, K. Fischer, and F. Zachariasen, 2000: Spirals on the sea. Proc. Roy. Soc. London, A456, 12171280, doi:10.1098/rspa.2000.0560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W. H., G. R. Miller, F. E. Snodgrass, and N. F. Barber, 2013: Correction: Directional recording of swell from distant storms. Philos. Trans. Roy. Soc. London, A371, 20130039, doi:10.1098/rsta.2013.0039.

    • Search Google Scholar
    • Export Citation
  • Onorato, M., D. Proment, and A. Toffoli, 2011: Triggering rogue waves in opposing currents. Phys. Rev. Lett., 107, 184502, doi:10.1103/PhysRevLett.107.184502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pearman, D. W., T. H. C. Herbers, T. T. Janssen, H. D. van Ettinger, S. A. McIntyre, and P. F. Jessen, 2014: Drifter observations of the effects of shoals and tidal-currents on wave evolution in San Francisco Bight. Cont. Shelf Res., 91, 109119, doi:10.1016/j.csr.2014.08.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1977: The Dynamics of the Upper Ocean. Cambridge University Press, 344 pp.

  • Phillips, O. M., 1984: On the response of short ocean wave components at a fixed wavenumber to ocean current variations. J. Phys. Oceanogr., 14, 14251433, doi:10.1175/1520-0485(1984)014<1425:OTROSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1985: Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech., 156, 505531, doi:10.1017/S0022112085002221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pizzo, N. E., and W. K. Melville, 2016: Wave modulation: The geometry, kinematics, and dynamics of surface-wave focusing. J. Fluid Mech., 803, 292312, doi:10.1017/jfm.2016.473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plant, W. J., W. C. Keller, and K. Hayes, 2005: Simultaneous measurement of ocean winds and waves with an airborne coherent real aperture radar. J. Atmos. Oceanic Technol., 22, 832846, doi:10.1175/JTECH1724.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rapp, R. J., and W. K. Melville, 1990: Laboratory measurements of deep-water breaking waves. Philos. Trans. Roy. Soc. London, A331, 735800, doi:10.1098/rsta.1990.0098.

    • Search Google Scholar
    • Export Citation
  • Reineman, B. D., L. Lenain, C. David, and W. K. Melville, 2009: A portable airborne scanning lidar system for ocean and coastal applications. J. Atmos. Oceanic Technol., 26, 26262641, doi:10.1175/2009JTECHO703.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romero, L., and W. K. Melville, 2010a: Numerical modeling of fetch-limited waves in the Gulf of Tehuantepec. J. Phys. Oceanogr., 40, 466468, doi:10.1175/2009JPO4128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romero, L., and W. K. Melville, 2010b: Airborne observations of fetch-limited waves in the Gulf of Tehuantepec. J. Phys. Oceanogr., 40, 441465, doi:10.1175/2009JPO4127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romero, L., and W. K. Melville, 2011: Spatial statistics of the sea surface in fetch-limited conditions. J. Phys. Oceanogr., 41, 18211841, doi:10.1175/2011JPO4535.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romero, L., W. K. Melville, and J. M. Kleiss, 2012: Spectral energy dissipation due to surface-wave breaking. J. Phys. Oceanogr., 42, 14211444, doi:10.1175/JPO-D-11-072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stansell, P., and C. MacFarlane, 2002: Experimental investigation of wave breaking criteria based on wave phase speeds. J. Phys. Oceanogr., 32, 12691283, doi:10.1175/1520-0485(2002)032<1269:EIOWBC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and E. G. Patton, 2014: Large-eddy simulation of marine atmospheric boundary layers above a spectrum of moving waves. J. Atmos. Sci., 71, 40014027, doi:10.1175/JAS-D-14-0095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutherland, P., and W. K. Melville, 2013: Field measurements and scaling of ocean surface wave-breaking statistics. Geophys. Res. Lett., 40, 30743079, doi:10.1002/grl.50584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutherland, P., and W. K. Melville, 2015: Field measurements of surface and near-surface turbulence in the presence of breaking waves. J. Phys. Oceanogr., 45, 943965, doi:10.1175/JPO-D-14-0133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tayfun, M. A., 1980: Narrow-band nonlinear sea waves. J. Geophys. Res., 85, 15481552, doi:10.1029/JC085iC03p01548.

  • Thorpe, S. A., 1982: On the clouds of bubbles formed by breaking wind-waves in deep water, and their role in air-sea gas transfer. Philos. Trans. Roy. Soc. London, A304, 155210, doi:10.1098/rsta.1982.0011.

    • Search Google Scholar
    • Export Citation
  • Toffoli, A., E. Bitner-Gregersen, M. Onorato, and A. V. Babanin, 2008: Wave crest and trough distributions in a broad-banded directional wave field. Ocean Eng., 35, 17841792, doi:10.1016/j.oceaneng.2008.08.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toffoli, A., T. Waseda, H. Houtani, L. Cavaleri, D. Greaves, and M. Onorato, 2015: Rogue waves in opposing currents: An experimental study on deterministic and stochastic wave trains. J. Fluid Mech., 769, 277297, doi:10.1017/jfm.2015.132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincent, C. E., 1979: The interaction of wind-generated sea waves with tidal currents. J. Phys. Oceanogr., 9, 748755, doi:10.1175/1520-0485(1979)009<0748:TIOWGS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D. W., A. K. Liu, C. Y. Peng, and E. A. Meindl, 1994: Wave-current interaction near the Gulf Stream during the surface wave dynamics experiment. J. Geophys. Res., 99, 50655079, doi:10.1029/93JC02714.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, B., and B. Fornberg, 1998: On the chance of freak waves at sea. J. Fluid Mech., 355, 113138, doi:10.1017/S0022112097007751.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1719 489 56
PDF Downloads 1174 302 38