Mixing Inferred from an Ocean Climatology and Surface Fluxes

Sjoerd Groeskamp Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Sjoerd Groeskamp in
Current site
Google Scholar
PubMed
Close
,
Bernadette M. Sloyan Oceans and Atmosphere, CSIRO, Hobart, Tasmania, Australia

Search for other papers by Bernadette M. Sloyan in
Current site
Google Scholar
PubMed
Close
,
Jan D. Zika School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Jan D. Zika in
Current site
Google Scholar
PubMed
Close
, and
Trevor J. McDougall School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Trevor J. McDougall in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study provides observation-based estimates, determined by inverse methods, of horizontal and isopycnal eddy diffusion coefficients KH and KI, respectively, the small-scale mixing coefficient D, and the diathermohaline streamfunction Ψ. The inverse solution of Ψ represents the ocean circulation in Absolute Salinity SA and Conservative Temperature Θ coordinates. The authors suggest that the observation-based estimate of Ψ will be useful for comparison with equivalent diagnostics from numerical climate models. The estimates of KH and KI represent horizontal eddy mixing in the mixed layer and isopycnal eddy mixing in the ocean interior, respectively. This study finds that the solution for D and KH are comparable to existing estimates. The solution for KI is one of the first observation-based global and full-depth constrained estimates of isopycnal mixing and indicates that KI is an order of magnitude smaller than KH. This suggests that there is a large vertical variation in the eddy mixing coefficient, which is generally not included in ocean models. With ocean models being very sensitive to the choice of isopycnal mixing, this result suggests that further investigation of the spatial structure of isopycnal eddy mixing from observations is required.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Sjoerd Groeskamp, sjoerdgroeskamp@gmail.com

Abstract

This study provides observation-based estimates, determined by inverse methods, of horizontal and isopycnal eddy diffusion coefficients KH and KI, respectively, the small-scale mixing coefficient D, and the diathermohaline streamfunction Ψ. The inverse solution of Ψ represents the ocean circulation in Absolute Salinity SA and Conservative Temperature Θ coordinates. The authors suggest that the observation-based estimate of Ψ will be useful for comparison with equivalent diagnostics from numerical climate models. The estimates of KH and KI represent horizontal eddy mixing in the mixed layer and isopycnal eddy mixing in the ocean interior, respectively. This study finds that the solution for D and KH are comparable to existing estimates. The solution for KI is one of the first observation-based global and full-depth constrained estimates of isopycnal mixing and indicates that KI is an order of magnitude smaller than KH. This suggests that there is a large vertical variation in the eddy mixing coefficient, which is generally not included in ocean models. With ocean models being very sensitive to the choice of isopycnal mixing, this result suggests that further investigation of the spatial structure of isopycnal eddy mixing from observations is required.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Sjoerd Groeskamp, sjoerdgroeskamp@gmail.com
Save
  • Abernathey, R. P., and J. Marshall, 2013: Global surface eddy diffusivities derived from satellite altimetry. J. Geophys. Res. Oceans, 118, 901916, doi:10.1002/jgrc.20066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abernathey, R. P., D. Ferreira, and A. Klocker, 2013: Diagnostics of isopycnal mixing in a circumpolar channel. Ocean Modell., 72, 116, doi:10.1016/j.ocemod.2013.07.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abernathey, R. P., I. Cerovecki, P. R. Holland, E. Newsom, M. Mazloff, and L. D. Talley, 2016: Water-mass transformation by sea ice in the upper branch of the Southern Ocean overturning. Nat. Geosci., 9, 596601, doi:10.1038/ngeo2749.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., 2001: Internal swell generation: The spatial distribution of energy flux from the wind to mixed layer near-inertial motions. J. Phys. Oceanogr., 31, 23592368, doi:10.1175/1520-0485(2001)031<2359:ISGTSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., M. C. Gregg, and M. A. Merrifield, 2006: Structure, propagation, and mixing of energetic baroclinic tides in Mamala Bay, Oahu, Hawaii. J. Phys. Oceanogr., 36, 9971018, doi:10.1175/JPO2877.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., M. F. Cronin, and J. M. Klymak, 2012: Annual cycle and depth penetration of wind-generated near-inertial internal waves at Ocean Station Papa in the northeast Pacific. J. Phys. Oceanogr., 42, 889909, doi:10.1175/JPO-D-11-092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Badin, G., and R. G. Williams, 2010: On the buoyancy forcing and residual circulation in the Southern Ocean: The feedback from Ekman and eddy transfer. J. Phys. Oceanogr., 40, 295310, doi:10.1175/2009JPO4080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Badin, G., R. G. Williams, Z. Jing, and L. Wu, 2013: Water mass transformations in the Southern Ocean diagnosed from observations: Contrasting effects of air–sea fluxes and diapycnal mixing. J. Phys. Oceanogr., 43, 14721484, doi:10.1175/JPO-D-12-0216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyer, T., and Coauthors, 2013: World Ocean Database 2013. NOAA Atlas NESDIS 72, 209 pp., doi:10.7289/V5NZ85MT.

    • Crossref
    • Export Citation
  • Broecker, W. S., 1991: The great ocean conveyor. Oceanography, 4, 7989.

  • Bryan, K., and L. J. Lewis, 1979: A water mass model of the World Ocean. J. Geophys. Res., 84, 25032517, doi:10.1029/JC084iC05p02503.

  • Cole, S. T., C. Wortham, E. Kunze, and W. B. Owens, 2015: Eddy stirring and horizontal diffusivity from Argo float observations: Geographic and depth variability. Geophys. Res. Lett., 42, 39893997, doi:10.1002/2015GL063827.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and J. Marshall, 2007: Effects of vertical variations of thickness diffusivity in an ocean general circulation model. Ocean Modell., 18, 122141, doi:10.1016/j.ocemod.2007.03.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and Coauthors, 2014: North Atlantic simulations in Coordinated Ocean-Ice Reference Experiments phase II (CORE-II). Part I: Mean states. Ocean Modell., 73, 76107, doi:10.1016/j.ocemod.2013.10.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and Coauthors, 2016: North Atlantic simulations in Coordinated Ocean-Ice Reference Experiments phase II (CORE-II). Part II: Inter-annual to decadal variability. Ocean Modell., 97, 6590, doi:10.1016/j.ocemod.2015.11.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 1985: The Energy flux from the wind to near-inertial motions in the surface mixed layer. J. Phys. Oceanogr., 15, 10431059, doi:10.1175/1520-0485(1985)015<1043:TEFFTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, doi:10.1029/2004JC002378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., G. Madec, J. Le Sommer, A. J. G. Nurser, and A. C. Naveira Garabato, 2016: On the consumption of Antarctic Bottom Water in the abyssal ocean. J. Phys. Oceanogr., 46, 635661, doi:10.1175/JPO-D-14-0201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Döös, K., J. Nilsson, J. Nycander, L. Brodeau, and M. Ballarotta, 2012: The World Ocean thermohaline circulation. J. Phys. Oceanogr., 42, 14451460, doi:10.1175/JPO-D-11-0163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., 2014: Oceanography: What goes down must come up. Nature, 513, 179180, doi:10.1038/513179a.

  • Ferrari, R., and D. Ferreira, 2011: What processes drive the ocean heat transport? Ocean Modell., 38, 171186, doi:10.1016/j.ocemod.2011.02.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., J. C. McWilliams, V. M. Canuto, and M. Dubovikov, 2008: Parameterization of eddy fluxes near oceanic boundaries. J. Climate, 21, 27702789, doi:10.1175/2007JCLI1510.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., S. M. Griffies, A. G. Nurser, and G. K. Vallis, 2010: A boundary-value problem for the parameterized mesoscale eddy transport. Ocean Modell., 32, 143156, doi:10.1016/j.ocemod.2010.01.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferreira, D., J. Marshall, and P. Heimbach, 2005: Estimating eddy stresses by fitting dynamics to observations using a residual-mean ocean circulation model and its adjoint. J. Phys. Oceanogr., 35, 18911910, doi:10.1175/JPO2785.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., and C. Wunsch, 2000: Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408, 453457, doi:10.1038/35044048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garabato, A. C. N., K. L. Polzin, B. A. King, K. J. Heywood, and M. Visbeck, 2004: Widespread intense turbulent mixing in the Southern Ocean. Science, 303, 210213, doi:10.1126/science.1090929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., J. Willebrand, T. J. McDougall, and J. C. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25, 463474, doi:10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 1986: Interocean exchange of thermocline water. J. Geophys. Res., 91, 50375046, doi:10.1029/JC091iC04p05037.

  • Gouretski, V., and K. P. Koltermann, 2004: WOCE global hydrographic climatology: A technical report. Berichte des Bundesamtes für Seeschifffahrt und Hydrographie 35/2004, 52 pp.

  • Graham, F. S., and T. J. McDougall, 2013: Quantifying the nonconservative production of Conservative Temperature, potential temperature, and entropy. J. Phys. Oceanogr., 43, 838862, doi:10.1175/JPO-D-11-0188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 2004: Fundamentals of Ocean Climate Models. Princeton University Press, 518 pp.

    • Crossref
    • Export Citation
  • Griffies, S. M., 2012: Elements of the Modular Ocean Model (MOM). NOAA Geophysical Fluid Dynamics Laboratory Ocean Group Tech. Rep. 7, 618 pp.

  • Groeskamp, S., J. D. Zika, T. J. McDougall, B. M. Sloyan, and F. Laliberté, 2014a: The representation of ocean circulation and variability in thermodynamic coordinates. J. Phys. Oceanogr., 44, 17351750, doi:10.1175/JPO-D-13-0213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groeskamp, S., J. D. Zika, B. M. Sloyan, T. J. McDougall, and P. C. McIntosh, 2014b: A thermohaline inverse method for estimating diathermohaline circulation and mixing. J. Phys. Oceanogr., 44, 26812697, doi:10.1175/JPO-D-14-0039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groeskamp, S., R. P. Abernathey, and A. Klocker, 2016: Water mass transformation by cabbeling and thermobaricity. Geophys. Res. Lett., 43, 10 83510 845, doi:10.1002/2016GL070860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanawa, K., and L. D. Talley, 2001: Mode waters. Ocean Circulation and Climate, G. Siedler, J. Gould, and J. Church, Eds., International Geophysics Series, Vol. 103, Academic Press, 373–386.

    • Crossref
    • Export Citation
  • Hieronymus, M., J. Nilsson, and J. Nycander, 2014: Water mass transformation in salinity–temperature space. J. Phys. Oceanogr., 44, 25472568, doi:10.1175/JPO-D-13-0257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloway, G., 1986: Estimation of oceanic eddy transports from satellite altimetry. Nature, 323, 243244, doi:10.1038/323243a0.

  • IOC, SCOR, and IAPSO, 2010: The International Thermodynamic Equation of Seawater—2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides 56, 220 pp. [Available online at http://www.teos-10.org/pubs/TEOS-10_Manual.pdf.]

  • Iselin, C. O., 1939: The influence of vertical and lateral turbulence on the characteristics of the waters at mid-depths. Eos, Trans. Amer. Geophys. Union, 20, 414417, doi:10.1029/TR020i003p00414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iudicone, D., G. Madec, and T. J. McDougall, 2008: Water-mass transformations in a neutral density framework and the key role of light penetration. J. Phys. Oceanogr., 38, 13571376, doi:10.1175/2007JPO3464.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iudicone, D., K. B. Rodgers, I. Stendardo, O. Aumont, G. Madec, L. Bopp, O. Mangoni, and M. Ribera d’Alcala, 2011: Water masses as a unifying framework for understanding the Southern Ocean carbon cycle. Biogeosciences, 8, 10311052, doi:10.5194/bg-8-1031-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackett, D. R., and T. J. McDougall, 1995: Minimal adjustment of hydrographic profiles to achieve static stability. J. Atmos. Oceanic Technol., 12, 381389, doi:10.1175/1520-0426(1995)012<0381:MAOHPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klocker, A., and T. J. McDougall, 2010: Quantifying the consequences of the ill-defined nature of neutral surfaces. J. Phys. Oceanogr., 40, 18661880, doi:10.1175/2009JPO4212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klocker, A., and R. Abernathey, 2014: Global patterns of mesoscale eddy properties and diffusivities. J. Phys. Oceanogr., 44, 10301046, doi:10.1175/JPO-D-13-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., E. Firing, J. M. Hummon, T. K. Chereskin, and A. M. Thurnherr, 2006: Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J. Phys. Oceanogr., 36, 15531576, doi:10.1175/JPO2926.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., R. Ferrari, J. Marshall, R. Tulloch, D. Balwada, and K. Speer, 2014: Float-derived isopycnal diffusivities in the dimes experiment. J. Phys. Oceanogr., 44, 764780, doi:10.1175/JPO-D-13-0175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364, doi:10.1007/s00382-008-0441-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., A. J. Watson, and C. S. Law, 1993: Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature, 364, 701703, doi:10.1038/364701a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., A. J. Watson, and C. S. Law, 1998: Mixing of a tracer in the pycnocline. J. Geophys. Res., 103, 21 49921 529, doi:10.1029/98JC01738.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and K. Speer, 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37, 25502562, doi:10.1175/JPO3130.1.

  • Marsh, R., 2000: Recent variability of the North Atlantic thermohaline circulation inferred from surface heat and freshwater fluxes. J. Climate, 13, 32393260, doi:10.1175/1520-0442(2000)013<3239:RVOTNA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, D., 1997: Subduction of water masses in an eddying ocean. J. Mar. Res., 55, 201222, doi:10.1357/0022240973224373.

  • Marshall, J., D. Jamous, and J. Nilsson, 1999: Reconciling thermodynamic and dynamic methods of computation of water-mass transformation rates. Deep-Sea Res. I, 46, 545572, doi:10.1016/S0967-0637(98)00082-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., 1987a: Neutral surfaces. J. Phys. Oceanogr., 17, 19501964, doi:10.1175/1520-0485(1987)017<1950:NS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., 1987b: Thermobaricity, cabbeling, and water-mass conversion. J. Geophys. Res., 92, 54485464, doi:10.1029/JC092iC05p05448.

  • McDougall, T. J., 2003: Potential enthalpy: A conservative oceanic variable for evaluating heat content and heat fluxes. J. Phys. Oceanogr., 33, 945963, doi:10.1175/1520-0485(2003)033<0945:PEACOV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and P. C. McIntosh, 2001: The temporal-residual-mean velocity. Part II: Isopycnal interpretation and the tracer and momentum equations. J. Phys. Oceanogr., 31, 12221246, doi:10.1175/1520-0485(2001)031<1222:TTRMVP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and P. M. Barker, 2011: Getting started with TEOS-10 and the Gibbs Seawater (GSW) oceanographic toolbox. SCOR/IAPSO WG127, 28 pp. [Available online at www.teos-10.org/pubs/Getting_Started.pdf.]

  • McDougall, T. J., D. R. Jackett, F. J. Millero, R. Pawlowicz, and P. M. Barker, 2012: A global algorithm for estimating Absolute Salinity. Ocean Sci., 8, 11231134, doi:10.5194/os-8-1123-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., S. Groeskamp, and S. M. Griffies, 2014: On geometrical aspects of interior ocean mixing. J. Phys. Oceanogr., 44, 21642175, doi:10.1175/JPO-D-13-0270.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McIntosh, P. C., and S. R. Rintoul, 1997: Do box inverse models work? J. Phys. Oceanogr., 27, 291308, doi:10.1175/1520-0485(1997)027<0291:DBIMW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melet, A., R. Hallberg, S. Legg, and K. Polzin, 2013: Sensitivity of the ocean state to the vertical distribution of internal-tide-driven mixing. J. Phys. Oceanogr., 43, 602615, doi:10.1175/JPO-D-12-055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menke, W., 1984: Geophysical Data Analysis: Discrete Inverse Theory. Elsevier, 260 pp.

    • Crossref
    • Export Citation
  • Meyer, A., B. M. Sloyan, K. L. Polzin, H. E. Phillips, and N. L. Bindoff, 2015: Mixing variability in the Southern Ocean. J. Phys. Oceanogr., 45, 966987, doi:10.1175/JPO-D-14-0110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Millero, F. J., R. Feistel, D. G. Wright, and T. J. McDougall, 2008: The composition of standard seawater and the definition of the reference-composition salinity scale. Deep-Sea Res. I, 55, 5072, doi:10.1016/j.dsr.2007.10.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W., 1966: Abyssal recipes. Deep-Sea Res. Oceanogr. Abstr., 13, 707730, doi:10.1016/0011-7471(66)90602-4.

  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, doi:10.1016/S0967-0637(98)00070-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, A. T., D. Menemenlis, and R. Kwok, 2009: Improved modeling of the Arctic halocline with a subgrid-scale brine rejection parameterization. J. Geophys. Res., 114, C11014, doi:10.1029/2008JC005121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2011: Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean. Geophys. Res. Lett., 38, L08610, doi:10.1029/2011GL046576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2013: Overturning circulation driven by breaking internal waves in the deep ocean. Geophys. Res. Lett., 40, 31333137, doi:10.1002/grl.50542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nurser, A. J. G., R. Marsh, and R. G. Williams, 1999: Diagnosing water mass formation from air–sea fluxes and surface mixing. J. Phys. Oceanogr., 29, 14681487, doi:10.1175/1520-0485(1999)029<1468:DWMFFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nycander, J., 2005: Generation of internal waves in the deep ocean by tides. J. Geophys. Res., 110, C10028, doi:10.1029/2004JC002487.

  • Okubo, A., 1971: Oceanic diffusion diagrams. Deep-Sea Res. Oceanogr. Abstr., 18, 789802, doi:10.1016/0011-7471(71)90046-5.

  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 8389, doi:10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., J. M. Toole, J. R. Ledwell, and R. W. Schmitt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 9396, doi:10.1126/science.276.5309.93.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pradal, M.-A., and A. Gnanadesikan, 2014: How does the Redi parameter for mesoscale mixing impact global climate in an Earth system model? J. Adv. Model. Earth Syst., 6, 586601, doi:10.1002/2013MS000273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 11541158, doi:10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ridgway, K., and J. Dunn, 2003: Mesoscale structure of the mean East Australian Current system and its relationship with topography. Prog. Oceanogr., 56, 189222, doi:10.1016/S0079-6611(03)00004-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ridgway, K., J. R. Dunn, and J. L. Wilkin, 2002: Ocean interpolation by four-dimensional weighted least squares—Application to the waters around Australasia. J. Atmos. Oceanic Technol., 19, 13571375, doi:10.1175/1520-0426(2002)019<1357:OIBFDW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roach, A. T., K. Aagaard, C. H. Pease, S. A. Salo, T. Weingartner, V. Pavlov, and M. Kulakov, 1995: Direct measurements of transport and water properties through the Bering Strait. J. Geophys. Res., 100, 18 44318 457, doi:10.1029/95JC01673.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, F. A., and J. P. McCreary Jr., 2001: The monsoon circulation of the Indian Ocean. Prog. Oceanogr., 51, 1123, doi:10.1016/S0079-6611(01)00083-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, F. A., M. Dengler, and R. Schoenefeldt, 2002: The shallow overturning circulation of the Indian Ocean. Prog. Oceanogr., 53, 57103, doi:10.1016/S0079-6611(02)00039-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sijp, W. P., M. Bates, and M. H. England, 2006: Can isopycnal mixing control the stability of the thermohaline circulation in ocean climate models? J. Climate, 19, 56375651, doi:10.1175/JCLI3890.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, H., 2004: Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modell., 6, 245263, doi:10.1016/S1463-5003(03)00011-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., and S. R. Rintoul, 2000: Estimates of area-averaged diapycnal fluxes from basin-scale budgets. J. Phys. Oceanogr., 30, 23202341, doi:10.1175/1520-0485(2000)030<2320:EOAADF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., and S. R. Rintoul, 2001: The Southern Ocean limb of the global deep overturning circulation. J. Phys. Oceanogr., 31, 143173, doi:10.1175/1520-0485(2001)031<0143:TSOLOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Speer, K. G., 1993: Conversion among North Atlantic surface water types. Tellus, 45A, 7279, doi:10.3402/tellusa.v45i1.14858.

  • Speer, K. G., 1997: A note on average cross-isopycnal mixing in the North Atlantic Ocean. Deep-Sea Res. I, 44, 19811990, doi:10.1016/S0967-0637(97)00054-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Speer, K. G., and E. Tziperman, 1992: Rates of water mass formation in the North Atlantic Ocean. J. Phys. Oceanogr., 22, 93104, doi:10.1175/1520-0485(1992)022<0093:ROWMFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tandon, A., and C. Garrett, 1997: Water mass formation from thermodynamics: A framework for examining compatibility with dynamics. International WOCE Newsletter, No. 28, WOCE International Project Office, Southampton, United Kingdom, 30–38. [Available online at https://www.nodc.noaa.gov/woce/wdiu/wocedocs/newsltr/news28/news28.pdf.]

  • Toggweiler, J. R., and B. Samuels, 1998: On the ocean’s large-scale circulation near the limit of no vertical mixing. J. Phys. Oceanogr., 28, 18321852, doi:10.1175/1520-0485(1998)028<1832:OTOSLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walin, G., 1982: On the relation between sea-surface heat flow and thermal circulation in the ocean. Tellus, 34A, 187195, doi:10.1111/j.2153-3490.1982.tb01806.x.

    • Search Google Scholar
    • Export Citation
  • Waterhouse, A. F., and Coauthors, 2014: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr., 44, 18541872, doi:10.1175/JPO-D-13-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., L. D. Talley, and J. A. MacKinnon, 2012: Spatial and temporal variability of global ocean mixing inferred from Argo profiles. Geophys. Res. Lett., 39, L18612, doi:10.1029/2012GL053196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1978: The North Atlantic general circulation west of 50°W determined by inverse methods. Rev. Geophys., 16, 583620, doi:10.1029/RG016i004p00583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1996: The Ocean Circulation Inverse Problem. Cambridge University Press, 442 pp.

    • Crossref
    • Export Citation
  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314, doi:10.1146/annurev.fluid.36.050802.122121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeager, S. G., and W. G. Large, 2008: CORE.2 global air-sea flux dataset. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, accessed 26 March 2013, doi:10.5065/D6WH2N0S.

    • Crossref
    • Export Citation
  • Zhurbas, V., and I. S. Oh, 2004: Drifter-derived maps of lateral diffusivity in the Pacific and Atlantic Oceans in relation to surface circulation patterns. J. Geophys. Res., 109, C05015, doi:10.1029/2003JC002241.

    • Search Google Scholar
    • Export Citation
  • Zika, J. D., T. J. McDougall, and B. M. Sloyan, 2010a: A tracer-contour inverse method for estimating ocean circulation and mixing. J. Phys. Oceanogr., 40, 2647, doi:10.1175/2009JPO4208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zika, J. D., T. J. McDougall, and B. M. Sloyan, 2010b: Weak mixing in the eastern North Atlantic: An application of the tracer-contour inverse method. J. Phys. Oceanogr., 40, 18811893, doi:10.1175/2010JPO4360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zika, J. D., M. H. England, and W. P. Sijp, 2012: The ocean circulation in thermohaline coordinates. J. Phys. Oceanogr., 42, 708724, doi:10.1175/JPO-D-11-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zika, J. D., N. Skliris, A. J. G. Nurser, S. A. Josey, L. Mudryk, F. Laliberté, and R. Marsh, 2015: Maintenance and broadening of the ocean’s salinity distribution by the water cycle. J. Climate, 28, 95509560, doi:10.1175/JCLI-D-15-0273.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 676 189 9
PDF Downloads 466 91 8