On the Nature of the Mesoscale Variability in Denmark Strait

Wilken-Jon von Appen Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany

Search for other papers by Wilken-Jon von Appen in
Current site
Google Scholar
PubMed
Close
,
Dana Mastropole Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Dana Mastropole in
Current site
Google Scholar
PubMed
Close
,
Robert S. Pickart Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Robert S. Pickart in
Current site
Google Scholar
PubMed
Close
,
HéÐinn Valdimarsson Marine Research Institute, Reykjavík, Iceland

Search for other papers by HéÐinn Valdimarsson in
Current site
Google Scholar
PubMed
Close
,
Steingrímur Jónsson University of Akureyri, Akureyri, and Marine Research Institute, Reykjavík, Iceland

Search for other papers by Steingrímur Jónsson in
Current site
Google Scholar
PubMed
Close
, and
James B. Girton Applied Physics Laboratory, University of Washington, Seattle, Washington

Search for other papers by James B. Girton in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Time series data from a mooring in the center of Denmark Strait and a collection of shipboard hydrographic sections occupied across the sill are used to elucidate the mesoscale variability of the dense overflow water in the strait. Two dominant, reoccurring features are identified that are referred to as a bolus and a pulse. A bolus is a large, weakly stratified lens of overflow water associated with cyclonic rotation and a modest increase in along-stream speed of 0.1 m s−1. When a bolus passes through the strait the interface height of the overflow layer increases by 60 m, and the bottom temperature decreases by 0.4°C. By contrast, a pulse is characterized by anticyclonic rotation, a strong increase in along-stream speed of >0.25 m s−1, a decrease in interface height of 90 m, and no significant bottom temperature signal. It is estimated that, on average, boluses (pulses) pass through the strait every 3.4 (5.4) days with no seasonal signal to their frequency. Both features have the strongest along-stream signal in the overflow layer, while the strongest cross-stream velocities occur above the Denmark Strait overflow water (DSOW). In this sense neither feature can be characterized as a simple propagating eddy. Their dynamics appear to be similar to that ascribed to the mesoscale variability observed downstream in the deep western boundary current. Strong correlation of bottom temperatures between the mooring in Denmark Strait and a downstream array, together with a match in the frequency of occurrence of features at both locations, suggests a causal relationship between the mesoscale variability at the sill and that farther downstream.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society.

Corresponding author e-mail: Wilken-Jon von Appen, wilken-jon.von.appen@awi.de

Abstract

Time series data from a mooring in the center of Denmark Strait and a collection of shipboard hydrographic sections occupied across the sill are used to elucidate the mesoscale variability of the dense overflow water in the strait. Two dominant, reoccurring features are identified that are referred to as a bolus and a pulse. A bolus is a large, weakly stratified lens of overflow water associated with cyclonic rotation and a modest increase in along-stream speed of 0.1 m s−1. When a bolus passes through the strait the interface height of the overflow layer increases by 60 m, and the bottom temperature decreases by 0.4°C. By contrast, a pulse is characterized by anticyclonic rotation, a strong increase in along-stream speed of >0.25 m s−1, a decrease in interface height of 90 m, and no significant bottom temperature signal. It is estimated that, on average, boluses (pulses) pass through the strait every 3.4 (5.4) days with no seasonal signal to their frequency. Both features have the strongest along-stream signal in the overflow layer, while the strongest cross-stream velocities occur above the Denmark Strait overflow water (DSOW). In this sense neither feature can be characterized as a simple propagating eddy. Their dynamics appear to be similar to that ascribed to the mesoscale variability observed downstream in the deep western boundary current. Strong correlation of bottom temperatures between the mooring in Denmark Strait and a downstream array, together with a match in the frequency of occurrence of features at both locations, suggests a causal relationship between the mesoscale variability at the sill and that farther downstream.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society.

Corresponding author e-mail: Wilken-Jon von Appen, wilken-jon.von.appen@awi.de
Save
  • Bruce, J., 1995: Eddies southwest of the Denmark Strait. Deep-Sea Res. I, 42, 1317, doi:10.1016/0967-0637(94)00040-Y.

  • Cooper, L., 1955: Deep water movements in the North Atlantic as a link between climatic changes around Iceland and biological productivity of the English Channel and Celtic Sea. J. Mar. Res., 14, 347362.

    • Search Google Scholar
    • Export Citation
  • Darelius, E., I. Fer, and D. Quadfasel, 2011: Faroe Bank Channel overflow: Mesoscale variability. J. Phys. Oceanogr., 41, 21372154, doi:10.1175/JPO-D-11-035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickson, R., and J. Brown, 1994: The production of North Atlantic Deep Water: Sources, rates, and pathways. J. Geophys. Res., 99, 12 31912 341, doi:10.1029/94JC00530.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Falina, A., A. Sarafanov, H. Mercier, P. Lherminier, A. Sokov, and N. Daniault, 2012: On the cascading of dense shelf waters in the Irminger Sea. J. Phys. Oceanogr., 42, 22542267, doi:10.1175/JPO-D-12-012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fristedt, T., R. Hietala, and P. Lundberg, 1999: Stability properties of a barotropic surface-water jet observed in the Denmark Strait. Tellus, 51A, 979989, doi:10.1034/j.1600-0870.1999.00030.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Girton, J., and T. Sanford, 2003: Descent and modification of the overflow plume in the Denmark Strait. J. Phys. Oceanogr., 33, 13511364, doi:10.1175/1520-0485(2003)033<1351:DAMOTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Girton, J., T. Sanford, and R. Käse, 2001: Synoptic sections of the Denmark Strait overflow. Geophys. Res. Lett., 28, 16191622, doi:10.1029/2000GL011970.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, B., and S. Østerhus, 2007: Faroe Bank Channel overflow 1995–2005. Prog. Oceanogr., 75, 817856, doi:10.1016/j.pocean.2007.09.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harden, B., and Coauthors, 2016: Upstream sources of the Denmark Strait overflow: Observations from a high-resolution mooring array. Deep-Sea Res. I, 112, 94112, doi:10.1016/j.dsr.2016.02.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hattermann, T., P. E. Isachsen, W.-J. von Appen, J. Albretsen, and A. Sundfjord, 2016: Eddy-driven recirculation of Atlantic Water in Fram Strait. Geophys. Res. Lett., 43, 34063414, doi:10.1002/2016GL068323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jochumsen, K., D. Quadfasel, H. Valdimarsson, and S. Jónsson, 2012: Variability of the Denmark Strait overflow: Moored time series from 1996–2011. J. Geophys. Res., 117, C12003, doi:10.1029/2012JC008244.

    • Search Google Scholar
    • Export Citation
  • Jochumsen, K., M. Köllner, D. Quadfasel, S. Dye, B. Rudels, and H. Valdimarsson, 2015: On the origin and propagation of Denmark Strait overflow water anomalies in the Irminger Basin. J. Geophys. Res. Oceans, 120, 18411855, doi:10.1002/2014JC010397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jónsson, S., 1999: The circulation in the northern part of the Denmark Strait and its variability. Int. Council for the Exploration of the Sea Tech. Rep. ICES CM 1999/L:06, 10 pp. [Available online at http://www.ices.dk/sites/pub/CM%20Doccuments/1999/L/L0699.pdf.]

  • Jónsson, S., and H. Valdimarsson, 2004: A new path for the Denmark Strait overflow water from the Iceland Sea to Denmark Strait. Geophys. Res. Lett., 31, L03305, doi:10.1029/2003GL019214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jónsson, S., and H. Valdimarsson, 2012: Water mass transport variability to the North Icelandic shelf, 1994–2010. ICES J. Mar. Sci., 69, 809815, doi:10.1093/icesjms/fss024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jungclaus, J., and J. Backhaus, 1994: Application of a transient reduced gravity plume model to the Denmark Strait overflow. J. Geophys. Res., 99, 12 37512 396, doi:10.1029/94JC00528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jungclaus, J., J. Hauser, and R. Käse, 2001: Cyclogenesis in the Denmark Strait overflow plume. J. Phys. Oceanogr., 31, 32143229, doi:10.1175/1520-0485(2001)031<3214:CITDSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Käse, R., J. Girton, and T. Sanford, 2003: Structure and variability of the Denmark Strait overflow: Model and observations. J. Geophys. Res., 108, 3181, doi:10.1029/2002JC001548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krauss, W., 1996: A note on overflow eddies. Deep-Sea Res. I, 43, 16611667, doi:10.1016/S0967-0637(96)00073-8.

  • Krauss, W., and R. H. Käse, 1998: Eddy formation in the Denmark Strait overflow. J. Geophys. Res., 103, 15 52515 538, doi:10.1029/98JC00785.

  • Macrander, A., R. Käse, U. Send, H. Valdimarsson, and S. Jónsson, 2007: Spatial and temporal structure of the Denmark Strait overflow revealed by acoustic observations. Ocean Dyn., 57, 7589, doi:10.1007/s10236-007-0101-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mastropole, D., R. S. Pickart, H. Valdimarsson, K. Våge, K. Jochumsen, and J. Girton, 2017: On the hydrography of Denmark Strait. J. Geophys. Res. Oceans, 122, doi:10.1002/2016JC012007, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mauritzen, C., 1996: Production of dense overflow waters feeding the North Atlantic across the Greenland-Scotland Ridge. Part 1: Evidence for a revised circulation scheme. Deep-Sea Res. I, 43, 769806, doi:10.1016/0967-0637(96)00037-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikolopoulos, A., K. Borenäs, R. Hietala, and P. Lundberg, 2003: Hydraulic estimates of Denmark Strait overflow. J. Geophys. Res., 108, 3095, doi:10.1029/2001JC001283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nunes, N., M. Moritz, K. Jochumsen, D. Quadfasel, K. Larsen, H. Valdimarsson, and S. Jónsson, 2016: A revised estimate of the Denmark Strait overflow. Geophysical Research Abstracts, Vol. 18, Abstract 13822. [Available online at http://meetingorganizer.copernicus.org/EGU2016/EGU2016-13822.pdf.]

  • Pawlowicz, R., B. Beardsley, and S. Lentz, 2002: Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Geosci., 28, 929937, doi:10.1016/S0098-3004(02)00013-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pickart, R., D. Torres, and P. Fratantoni, 2005: The East Greenland Spill Jet. J. Phys. Oceanogr., 35, 10371053, doi:10.1175/JPO2734.1.

  • Ross, C., 1978: Overflow variability in Denmark Strait. Int. Council for the Exploration of the Sea Tech. Rep. ICES CM 1978/C:21, 9 pp. [Available online at http://www.ices.dk/sites/pub/CM%20Doccuments/1978/C/1978_C21.pdf.]

    • Search Google Scholar
    • Export Citation
  • Rudels, B., E. Fahrbach, J. Meincke, G. Budéus, and P. Eriksson, 2002: The East Greenland Current and its contribution to the Denmark Strait overflow. ICES J. Mar. Sci., 59, 11331154, doi:10.1006/jmsc.2002.1284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, X. B., L. P. Røed, and B. Hackett, 2001: Variability of the Denmark Strait overflow: A numerical study. J. Geophys. Res., 106, 22 27722 294, doi:10.1029/2000JC000642.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, P., 1976: Baroclinic instability in the Denmark Strait overflow. J. Phys. Oceanogr., 6, 355371, doi:10.1175/1520-0485(1976)006<0355:BIITDS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spall, M., and J. Price, 1998: Mesoscale variability in Denmark Strait: The PV outflow hypothesis. J. Phys. Oceanogr., 28, 15981623, doi:10.1175/1520-0485(1998)028<1598:MVIDST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strass, V. H., E. Fahrbach, U. Schauer, and L. Sellmann, 1993: Formation of Denmark Strait overflow water by mixing in the East Greenland Current. J. Geophys. Res., 98, 69076919, doi:10.1029/92JC02732.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swaters, G., and G. Flierl, 1991: Dynamics of ventilated coherent cold eddies on a sloping bottom. J. Fluid Mech., 223, 565587, doi:10.1017/S0022112091001556.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swift, J. H., and K. Aagaard, 1981: Seasonal transitions and water mass formation in the Iceland and Greenland Seas. Deep-Sea Res., 28A, 11071129, doi:10.1016/0198-0149(81)90050-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talley, L., and M. McCartney, 1982: Distribution and circulation of Labrador Sea Water. J. Phys. Oceanogr., 12, 11891205, doi:10.1175/1520-0485(1982)012<1189:DACOLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Våge, K., R. Pickart, M. Spall, H. Valdimarsson, S. Jónsson, D. Torres, S. Østerhus, and T. Eldevik, 2011: Significant role of the north Icelandic jet in the formation of Denmark Strait overflow water. Nat. Geosci., 4, 723727, doi:10.1038/ngeo1234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Våge, K., R. Pickart, M. Spall, G. Moore, H. Valdimarsson, D. Torres, S. Erofeeva, and J. Nilsen, 2013: Revised circulation scheme north of the Denmark Strait. Deep-Sea Res., 79, 2039, doi:10.1016/j.dsr.2013.05.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Appen, W.-J., and Coauthors, 2014a: The East Greenland Spill Jet as an important component of the Atlantic meridional overturning circulation. Deep-Sea Res. I, 92, 7584, doi:10.1016/j.dsr.2014.06.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Appen, W.-J., R. Pickart, K. Brink, and T. W. N. Haine, 2014b: Water column structure and statistics of Denmark Strait overflow water cyclones. Deep-Sea Res. I, 84, 110126, doi:10.1016/j.dsr.2013.10.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitehead, J., M. Stern, G. Flierl, and B. Klinger, 1990: Experimental observations of baroclinic eddies on a sloping bottom. J. Geophys. Res., 95, 95859610, doi:10.1029/JC095iC06p09585.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Worthington, L., 1969: An attempt to measure the volume transport of Norwegian Sea overflow water through the Denmark Strait. Deep Sea Res., 16 (Suppl.), 421432.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 657 193 27
PDF Downloads 235 91 15