The Impact of Ocean Surface Currents on Sverdrup Transport in the Midlatitude North Pacific via the Wind Stress Formulation

Zhitao Yu Naval Research Laboratory, Stennis Space Center, Mississippi

Search for other papers by Zhitao Yu in
Current site
Google Scholar
PubMed
Close
,
E. Joseph Metzger Naval Research Laboratory, Stennis Space Center, Mississippi

Search for other papers by E. Joseph Metzger in
Current site
Google Scholar
PubMed
Close
, and
Yalin Fan Naval Research Laboratory, Stennis Space Center, Mississippi

Search for other papers by Yalin Fan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A more complete wind stress τn formulation takes into account the ocean surface currents Vo, while the conventional wind stress τc popularly used in ocean circulation models is only a function of 10-m winds V10. An analytical solution is derived for the difference of Sverdrup transport induced by using τn instead of τc. A scaling analysis of the analytical solution indicates a 6% reduction of the Sverdrup transport in the North Pacific (i.e., the Kuroshio transport in the East China Sea) when Ekman velocity dominates the ocean surface currents. Because of the quadratic nature of wind stress, four nonlinear terms contribute equally to this difference: two vorticity torque terms and two speed gradient torque terms. A pair of 12.5-yr (July 2002–14) Hybrid Coordinate Ocean Model simulations that only differ in the wind stress formulation are used to test the analytical solution. The model results (2004–14) confirm that using τn instead of τc reduces the Sverdrup transport in the North Pacific by 8%–17% between 23° and 32°N. The reduction rate of the simulated 11-yr mean Kuroshio transport through the East Taiwan Channel and Tokara Strait is 8.0% (−2.5 Sv; 1 Sv ≡ 106 m3 s−1) and 12.8% (−4.8 Sv), respectively, in good agreement with the Sverdrup transport reduction rate, which is 7.4% (−2.6 Sv) and 15.4% (−6.3 Sv) at the corresponding latitude. The local effect of changing wind stress/wind work and Ekman transport due to the inclusion of Vo in the wind stress formulation is negligible compared to the Kuroshio volume transport change estimated in this study.

Naval Research Laboratory Contribution Number NRL/JA/7320-16-2895.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Zhitao Yu, zhitao.yu@nrlssc.navy.mil

Abstract

A more complete wind stress τn formulation takes into account the ocean surface currents Vo, while the conventional wind stress τc popularly used in ocean circulation models is only a function of 10-m winds V10. An analytical solution is derived for the difference of Sverdrup transport induced by using τn instead of τc. A scaling analysis of the analytical solution indicates a 6% reduction of the Sverdrup transport in the North Pacific (i.e., the Kuroshio transport in the East China Sea) when Ekman velocity dominates the ocean surface currents. Because of the quadratic nature of wind stress, four nonlinear terms contribute equally to this difference: two vorticity torque terms and two speed gradient torque terms. A pair of 12.5-yr (July 2002–14) Hybrid Coordinate Ocean Model simulations that only differ in the wind stress formulation are used to test the analytical solution. The model results (2004–14) confirm that using τn instead of τc reduces the Sverdrup transport in the North Pacific by 8%–17% between 23° and 32°N. The reduction rate of the simulated 11-yr mean Kuroshio transport through the East Taiwan Channel and Tokara Strait is 8.0% (−2.5 Sv; 1 Sv ≡ 106 m3 s−1) and 12.8% (−4.8 Sv), respectively, in good agreement with the Sverdrup transport reduction rate, which is 7.4% (−2.6 Sv) and 15.4% (−6.3 Sv) at the corresponding latitude. The local effect of changing wind stress/wind work and Ekman transport due to the inclusion of Vo in the wind stress formulation is negligible compared to the Kuroshio volume transport change estimated in this study.

Naval Research Laboratory Contribution Number NRL/JA/7320-16-2895.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Zhitao Yu, zhitao.yu@nrlssc.navy.mil
Save
  • Bleck, R., 2002: An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Modell., 4, 5588, doi:10.1016/S1463-5003(01)00012-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chao, S.-Y., 1984: Bimodality of the Kuroshio. J. Phys. Oceanogr., 14, 92103, doi:10.1175/1520-0485(1984)014<0092:BOTK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chassignet, E. P., and Coauthors, 2000: DAMEE_NAB: The base experiments. Dyn. Atmos. Oceans, 32, 155184, doi:10.1016/S0377-0265(00)00046-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chassignet, E. P., L. T. Smith, G. R. Halliwell, and R. Bleck, 2003: North Atlantic simulations with the Hybrid Coordinate Ocean Model (HYCOM): Impact of the vertical coordinate choice, reference pressure, and thermobaricity. J. Phys. Oceanogr., 33, 25042526, doi:10.1175/1520-0485(2003)033<2504:NASWTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and S.-P. Xie, 2010: Coupled ocean–atmosphere interaction at oceanic mesoscales. Oceanography, 23, 5269, doi:10.5670/oceanog.2010.05.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and Coauthors, 2001: Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific. J. Climate, 14, 14791498, doi:10.1175/1520-0442(2001)014<1479:OOCBSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, M. H. Freilich, and R. F. Milliff, 2004: Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303, 978983, doi:10.1126/science.1091901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colling, A., 2001: Ocean Circulation. 2nd ed. Butterworth Heinemann, 286 pp.

  • Cornillon, P., and K.-A. Park, 2001: Warm core ring velocities inferred from NSCAT. Geophys. Res. Lett., 28, 575578, doi:10.1029/2000GL011487.

  • Dawe, J. T., and L. Thompson, 2006: Effect of ocean surface currents on wind stress, heat flux, and wind power input to the ocean. Geophys. Res. Lett., 33, L09604, doi:10.1029/2006GL025784.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dewar, W. K., and G. R. Flierl, 1987: Some effects of the wind on rings. J. Phys. Oceanogr., 17, 16531667, doi:10.1175/1520-0485(1987)017<1653:SEOTWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douglass, E. M., S. R. Jayne, F. O. Bryan, S. Peacock, and M. Maltrud, 2012: Kuroshio pathways in a climatologically forced model. J. Oceanogr., 68, 625639, doi:10.1007/s10872-012-0123-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duhaut, T. H. A., and D. N. Straub, 2006: Wind stress dependence on ocean surface velocity: Implications for mechanical energy input to ocean circulation. J. Phys. Oceanogr., 36, 202211, doi:10.1175/JPO2842.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eden, C., and H. Dietze, 2009: Effects of mesoscale eddy/wind interactions on biological new production and eddy kinetic energy. J. Geophys. Res., 114, C05023, doi:10.1029/2008JC005129.

    • Search Google Scholar
    • Export Citation
  • Endoh, T., and T. Hibiya, 2001: Numerical simulation of the transient response of the Kuroshio leading to the large meander formation south of Japan. J. Geophys. Res., 106, 26 83326 850, doi:10.1029/2000JC000776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Endoh, T., and T. Hibiya, 2009: Interaction between the trigger meander of the Kuroshio and the abyssal anticyclone over Koshu Seamount as seen in the reanalysis data. Geophys. Res. Lett., 36, L18604, doi:10.1029/2009GL039389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, doi:10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fofonoff, N. P., 1980: The Gulf Stream system. Evolution of Physical Oceanography: Scientific Surveys in Honor of Henry Stommel, B. A. Warren and C. Wunsch, Eds., MIT Press, 112–139.

  • Frenger, I., N. Gruber, R. Knutti, and M. Munnich, 2013: Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nat. Geosci., 6, 608612, doi:10.1038/ngeo1863.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaube, P. D., D. B. Chelton, R. M. Samelson, M. G. Schlax, and L. W. O’Neill, 2015: Satellite observations of mesoscale eddy-induced Ekman pumping. J. Phys. Oceanogr., 45, 104132, doi:10.1175/JPO-D-14-0032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, A. R., and S. C. Riser, 2014: A global analysis of Sverdrup balance using absolute geostrophic velocities from Argo. J. Phys. Oceanogr., 44, 12131229, doi:10.1175/JPO-D-12-0206.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hao, J., Y. Chen, F. Wang, and P. Lin, 2012: Seasonal thermocline in the China Seas and northwestern Pacific Ocean. J. Geophys. Res., 117, C02022, doi:10.1029/2011JC007246.

    • Search Google Scholar
    • Export Citation
  • Hautala, S., D. Roemmich, and W. J. Schmitz Jr., 1994: Is the North Pacific in Sverdrup balance along 24°N? J. Geophys. Res., 99, 16 04116 052, doi:10.1029/94JC01084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, C. W., and C. Wilson, 2008: Wind work on the geostrophic ocean circulation: An observational study of the effect of small scales in the wind stress. J. Geophys. Res., 113, C02016, doi:10.1029/2007JC004371.

    • Search Google Scholar
    • Export Citation
  • Hughes, G. O., A. M. Hogg, and R. W. Griffiths, 2009: Available potential energy and irreversible mixing in the meridional overturning circulation. J. Phys. Oceanogr., 39, 31303146, doi:10.1175/2009JPO4162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurlburt, H. E., A. J. Wallcraft, W. J. Schmitz Jr., P. J. Hogan, and E. J. Metzger, 1996: Dynamics of the Kuroshio/Oyashio Current System using eddy-resolving models of the North Pacific Ocean. J. Geophys. Res., 101, 941976, doi:10.1029/95JC01674.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ichikawa, H., H. Nakamura, A. Nishina, and M. Higashi, 2004: Variability of northeastward current southeast of northern Ryukyu Islands. J. Oceanogr., 60, 351363, doi:10.1023/B:JOCE.0000038341.27622.73.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kara, A. B., H. E. Hurlburt, and A. J. Wallcraft, 2005: Stability-dependent exchange coefficients for air–sea fluxes. J. Atmos. Oceanic Technol., 22, 10801094, doi:10.1175/JTECH1747.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kara, A. B., E. J. Metzger, and M. A. Bourassa, 2007a: Ocean current and wave effects on wind stress drag coefficient over the global ocean. Geophys. Res. Lett., 34, L01604, doi:10.1029/2006GL027849.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kara, A. B., A. J. Wallcraft, E. J. Metzger, and H. E. Hurlburt, 2007b: Wind stress drag coefficient over the global ocean. J. Climate, 20, 58565864, doi:10.1175/2007JCLI1825.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawabe, M., 1985: Sea level variations at the Izu Islands and typical stable paths of the Kuroshio. J. Oceanogr. Soc. Japan, 41, 307326, doi:10.1007/BF02109238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawabe, M., 1995: Variations of current path, velocity, and volume transport of the Kuroshio in relation with the large meander. J. Phys. Oceanogr., 25, 31033117, doi:10.1175/1520-0485(1995)025<3103:VOCPVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, K. A., S. Dickinson, M. J. McPhaden, and G. C. Johnson, 2001: Ocean currents evident in satellite wind data. Geophys. Res. Lett., 28, 24692472, doi:10.1029/2000GL012610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., S. Masson, R. Roeckner, G. Madec, and T. Yamagata, 2005: Reducing climatology bias in an ocean–atmosphere CGCM with improved coupling physics. J. Climate, 18, 23442360, doi:10.1175/JCLI3404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masuda, A., 1982: An interpretation of the bimodal character of the stable Kuroshio path. Deep-Sea Res., 29, 471484, doi:10.1016/0198-0149(82)90071-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Metzger, E. J., and Coauthors, 2014: US Navy operational global ocean and Arctic ice prediction systems. Oceanography, 27, 3243, doi:10.5670/oceanog.2014.66.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., H. Ichikawa, and A. Nishina, 2007: Numerical study of the dynamics of the Ryukyu Current System. J. Geophys. Res., 112, C04016, doi:10.1029/2006JC003595.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., M. Monaka, and H. Sasaki, 2010: Seasonality of the Kuroshio path destabilization phenomenon in the Okinawa Trough: A numerical study of its mechanism. J. Phys. Oceanogr., 40, 530550, doi:10.1175/2009JPO4156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nonaka, M., and S. Xie, 2003: Covariations of sea surface temperature and wind over the Kuroshio and its extension: Evidence for ocean-to-atmosphere feedback. J. Climate, 16, 14041413, doi:10.1175/1520-0442(2003)16<1404:COSSTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., S. K. Esbensen, N. Thum, R. M. Samelson, and D. B. Chelton, 2010: Dynamical analysis of the boundary layer and surface wind responses to mesoscale SST perturbations. J. Climate, 23, 559581, doi:10.1175/2009JCLI2662.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., D. B. Chelton, and S. K. Esbensen, 2012: Covariability of surface wind and stress responses to sea surface temperature fronts. J. Climate, 25, 59165942, doi:10.1175/JCLI-D-11-00230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., 1987: Effect of equatorial currents on surface stress. J. Phys. Oceanogr., 17, 833838, doi:10.1175/1520-0485(1987)017<0833:EOECOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, K.-A., and P. C. Cornillon, 2002: Stability-induced modification of sea surface winds over Gulf Stream rings. Geophys. Res. Lett., 29, 2211, doi:10.1029/2001GL014236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renault, L., M. J. Molemaker, J. C. McWilliams, A. F. Shchepetkin, F. Lemarie, D. Chelton, S. Illig, and A. Hall, 2016: Modulation of wind work by oceanic current interaction with the atmosphere. J. Phys. Oceanogr., 46, 16851704, doi:10.1175/JPO-D-15-0232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, H., A. J. Miller, and J. R. Norris, 2016: Eddy–wind interaction in the California Current System: Dynamics and impacts. J. Phys. Oceanogr., 46, 439459, doi:10.1175/JPO-D-15-0086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Small, R. J., S. P. Xie, L. O’Neill, H. Seo, Q. Song, P. Cornillon, and S. Minobe, 2008: Air–sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45, 274319, doi:10.1016/j.dynatmoce.2008.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, M. E., 1975: Ocean Circulation Physics. Academic Press, 246 pp.

  • Sverdrup, H., 1947: Wind-driven currents in a baroclinic ocean: With application to the equatorial currents of the eastern Pacific. Proc. Natl. Acad. Sci. USA, 33, 318326, doi:10.1073/pnas.33.11.318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Usui, N., H. Tsujino, Y. Fujii, and M. Kamachi, 2008a: Generation of a trigger meander for the 2004 Kuroshio large meander. J. Geophys. Res., 113, C01012, doi:10.1029/2007JC004266.

    • Search Google Scholar
    • Export Citation
  • Usui, N., H. Tsujino, H. Nakano, and F. Fujii, 2008b: Formation process of the Kuroshio large meander in 2004. J. Geophys. Res., 113, C08047, doi:10.1029/2007JC004675.

    • Search Google Scholar
    • Export Citation
  • Winters, K. B., P. N. Lombard, J. J. Riley, and E. A. D’Asaro, 1995: Available potential energy and mixing in density stratified fluids. J. Fluid Mech., 289, 115128, doi:10.1017/S002211209500125X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and D. Roemmich, 1985: Is the North Atlantic in Sverdrup balance? J. Phys. Oceanogr., 15, 18761880, doi:10.1175/1520-0485(1985)015<1876:ITNAIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S., 2004: Satellite observations of cool ocean–atmosphere interaction. Bull. Amer. Meteor. Soc., 85, 195208, doi:10.1175/BAMS-85-2-195.

  • Xu, Y., and R. B. Scott, 2008: Subtleties in forcing eddy resolving ocean models with satellite wind data. Ocean Modell., 20, 240251, doi:10.1016/j.ocemod.2007.09.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamagata, T., and S. Umatani, 1989: Geometry-forced coherent structures as a model of the Kuroshio large meander. J. Phys. Oceanogr., 19, 130138, doi:10.1175/1520-0485(1989)019<0130:GFCSAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yasuda, I., J. Yoon, and N. Suginohara, 1985: Dynamics of the Kuroshio large meander: Barotropical model. J. Oceanogr. Soc. Japan, 41, 259273, doi:10.1007/BF02109275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, Z., and Coauthors, 2015: Seasonal cycle of volume transport through Kerama Gap revealed by a 20-year global Hybrid Coordinate Ocean Model reanalysis. Ocean Modell., 96, 203213, doi:10.1016/j.ocemod.2015.10.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, X., and R. J. Greatbatch, 2007: Wind work in a model of the northwest Atlantic Ocean. Geophys. Res. Lett., 34, L04606, doi:10.1029/2006GL028907.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, X.-H., I.-S. Han, J.-H. Park, H. Ichikawa, K. Murakami, A. Kaneko, and A. Ostrovskii, 2003: The northeastward current southeast of Olinava Island observed during November 2000 to August 2001. Geophys. Res. Lett., 30, 1071, doi:10.1029/2002GL015867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, X.-H., J.-H. Park, and I. Kaneko, 2005: The northeastward current southeast of the Ryukyu Islands in late fall of 2000 estimated by an inverse technique. Geophys. Res. Lett., 32, L05608, doi:10.1029/2004GL022135.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 532 137 12
PDF Downloads 396 107 4