On the Leeuwin Current System and Its Linkage to Zonal Flows in the South Indian Ocean as Inferred from a Gridded Hydrography

Ryo Furue Application Laboratory, JAMSTEC, Yokohama, Japan

Search for other papers by Ryo Furue in
Current site
Google Scholar
PubMed
Close
,
Kévin Guerreiro LEGOS, Toulouse, France

Search for other papers by Kévin Guerreiro in
Current site
Google Scholar
PubMed
Close
,
Helen E. Phillips IMAS, and ARC CSS, University of Tasmania, Hobart, Australia

Search for other papers by Helen E. Phillips in
Current site
Google Scholar
PubMed
Close
,
Julian P. McCreary Jr. IPRC, University of Hawaii, Honolulu, Hawaii

Search for other papers by Julian P. McCreary Jr. in
Current site
Google Scholar
PubMed
Close
, and
Nathaniel L. Bindoff ARC CSS, and ACE CRC, and IMAS, University of Tasmania, and CSIRO, Hobart, Australia

Search for other papers by Nathaniel L. Bindoff in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Leeuwin Current System (LCS) along the coast of Western Australia consists of the poleward-flowing Leeuwin Current (LC), the equatorward-flowing Leeuwin Undercurrent (LUC), and neighboring flows in the south Indian Ocean (SIO). Using geostrophic currents obtained from a highly resolved (⅛°) hydrographic climatology [CSIRO Atlas of Regional Seas (CARS)], this study describes the spatial structure and annual variability of the LC, LUC, and SIO zonal currents, estimates their transports, and identifies linkages among them. In CARS, the LC is supplied partly by water from the tropics (an annual mean of 0.3 Sv; 1 Sv ≡ 106 m3 s−1) but mostly by shallow (200 m) eastward flows in the SIO (4.7 Sv), and it loses water by downwelling across the bottom of this layer (3.4 Sv). The downwelling is so strong that, despite the large SIO inflow, the horizontal transport of the LC does not much increase to the south (from 0.3 Sv at 22°S to 1.5 Sv at 34°S). This LC transport is significantly smaller than previously reported. The LUC is supplied by water from south of Australia (0.2 Sv), by eastward inflow from the SIO south of 28°S (1.6 Sv), and by the downwelling from the LC (1.6 Sv) and in response strengthens northward, reaching a maximum near 28°S (3.4 Sv). North of 28°S it loses water by outflow into subsurface westward flow (−3.6 Sv between 28° and 22°S) and despite an additional downwelling from the LC (1.9 Sv), it decreases to the north (1.7 Sv at 22°S). The seasonality of the LUC is described for the first time.

Denotes content that is immediately available upon publication as open access.

School of Ocean and Earth Science and Technology Publication Number 9882 and International Pacific Research Center Publication Number 1230.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Ryo Furue, furue@hawaii.edu

Abstract

The Leeuwin Current System (LCS) along the coast of Western Australia consists of the poleward-flowing Leeuwin Current (LC), the equatorward-flowing Leeuwin Undercurrent (LUC), and neighboring flows in the south Indian Ocean (SIO). Using geostrophic currents obtained from a highly resolved (⅛°) hydrographic climatology [CSIRO Atlas of Regional Seas (CARS)], this study describes the spatial structure and annual variability of the LC, LUC, and SIO zonal currents, estimates their transports, and identifies linkages among them. In CARS, the LC is supplied partly by water from the tropics (an annual mean of 0.3 Sv; 1 Sv ≡ 106 m3 s−1) but mostly by shallow (200 m) eastward flows in the SIO (4.7 Sv), and it loses water by downwelling across the bottom of this layer (3.4 Sv). The downwelling is so strong that, despite the large SIO inflow, the horizontal transport of the LC does not much increase to the south (from 0.3 Sv at 22°S to 1.5 Sv at 34°S). This LC transport is significantly smaller than previously reported. The LUC is supplied by water from south of Australia (0.2 Sv), by eastward inflow from the SIO south of 28°S (1.6 Sv), and by the downwelling from the LC (1.6 Sv) and in response strengthens northward, reaching a maximum near 28°S (3.4 Sv). North of 28°S it loses water by outflow into subsurface westward flow (−3.6 Sv between 28° and 22°S) and despite an additional downwelling from the LC (1.9 Sv), it decreases to the north (1.7 Sv at 22°S). The seasonality of the LUC is described for the first time.

Denotes content that is immediately available upon publication as open access.

School of Ocean and Earth Science and Technology Publication Number 9882 and International Pacific Research Center Publication Number 1230.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Ryo Furue, furue@hawaii.edu
Save
  • Akhir, M. F., and C. B. Pattiaratchi, 2006: Summer physical processes along the continental shelf and slope off southern Western Australia. Proc. Sixth Int. Symp. on Stratified Flows, Perth, Western Australia, G. N. Ivey, Ed., 239–244.

  • Andrews, J. C., 1983: Ring structure in the poleward boundary current off Western Australia in summer. Aust. J. Mar. Freshwater Res., 34, 547561, doi:10.1071/MF9830547.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benthuysen, J., R. Furue, J. P. McCreary, N. L. Bindoff, and H. E. Phillips, 2014: Dynamics of the Leeuwin Current: Part 2. The role of mixing and advection in a buoyancy-driven eastern boundary current over a continental shelf. Dyn. Atmos. Oceans, 65, 3963, doi:10.1016/j.dynatmoce.2013.10.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bingham, R. J., and C. W. Hughes, 2012: Local diagnostics to estimate density-induced sea level variations over topography and along coastlines. J. Geophys. Res., 117, C01013, doi:10.1029/2011JC007276.

    • Search Google Scholar
    • Export Citation
  • Bye, J. A. T., 1972: Oceanic circulation south of Australia. Antarctica Oceanology II: The Australian–New Zealand Sector, Antarctic Research Series, Vol. 19, Amer. Geophys. Union, 95–100.

    • Crossref
    • Export Citation
  • Church, J. A., G. R. Cresswell, and J. S. Godfrey, 1989: The Leeuwin Current. Poleward Flows along Eastern Ocean Boundaries, Coastal Estuarine Studies, Vol. 34, Amer. Geophys. Union, 230–254.

    • Crossref
    • Export Citation
  • Cresswell, G. R., and T. J. Golding, 1980: Observations of a south-flowing current in the southeastern Indian Ocean. Deep Sea Res., 27A, 449466, doi:10.1016/0198-0149(80)90055-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cresswell, G. R., F. M. Boland, J. L. Peterson, and G. S. Wells, 1989: Continental shelf currents near the Abrolhos Islands, Western Australia. Aust. J. Mar. Freshwater Res., 40, 113128, doi:10.1071/MF9890113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Divakaran, P., and G. B. Brassington, 2011: Arterial ocean circulation of the southeast Indian Ocean. Geophys. Res. Lett., 38, L01802, doi:10.1029/2010GL045574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Domingues, C. M., 2006: Kinematics and heat budget of the Leeuwin Current. Ph.D. thesis, Flinders University of South Australia, 156 pp.

  • Domingues, C. M., M. E. Maltrud, S. E. Wijffels, J. A. Church, and M. Tomczak, 2007: Simulated Lagrangian pathways between the Leeuwin Current System and the upper-ocean circulation of the southeast Indian Ocean. Deep-Sea Res. II, 54, 797817, doi:10.1016/j.dsr2.2006.10.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunn, J. R., and K. R. Ridgway, 2002: Mapping ocean properties in regions of complex topography. Deep-Sea Res. I, 49, 591604, doi:10.1016/S0967-0637(01)00069-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duran, E. R., 2015: An investigation of the Leeuwin Undercurrent source waters and pathways. Bachelor’s of Marine Science with Honours thesis, Institute for Marine and Antarctic Studies, University of Tasmania, 112 pp.

  • Fang, F., and R. Morrow, 2003: Evolution, movement and decay of warm-core Leeuwin Current eddies. Deep-Sea Res. II, 50, 22452261, doi:10.1016/S0967-0645(03)00055-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, M., G. Meyers, A. Pearce, and S. Wijffels, 2003: Annual and interannual variations of the Leeuwin Current at 32°S. J. Geophys. Res., 108, 3355, doi:10.1029/2002JC001763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, M., S. Wijffels, S. Godfrey, and G. Meyers, 2005: Do eddies play a role in the momentum balance of the Leeuwin Current? J. Phys. Oceanogr., 35, 964975, doi:10.1175/JPO2730.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fratantoni, P. S., and R. S. Pickart, 2007: The western North Atlantic shelfbreak current system in summer. J. Phys. Oceanogr., 37, 25092533, doi:10.1175/JPO3123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frouin, R., A. F. G. Fiúza, I. Ambar, and T. J. Boyd, 1990: Observations of a poleward surface current off the coasts of Portugal and Spain during winter. J. Geophys. Res., 95, 679691, doi:10.1029/JC095iC01p00679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Furue, R., J. P. McCreary, J. Benthuysen, H. E. Phillips, and N. L. Bindoff, 2013: Dynamics of the Leeuwin Current: Part 1. Coastal flows in an inviscid, variable-density, layer model. Dyn. Atmos. Oceans, 63, 2459, doi:10.1016/j.dynatmoce.2013.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Godfrey, J. S., and K. R. Ridgway, 1985: The large-scale environment of the poleward-flowing Leeuwin Current, Western Australia: Longshore steric height gradients, wind stresses and geostrophic flow. J. Phys. Oceanogr., 15, 481495, doi:10.1175/1520-0485(1985)015<0481:TLSEOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Godfrey, J. S., and Coauthors, 1995: The role of the Indian Ocean in the global climate system: Recommendations regarding the global ocean observing system. Ocean Observing System Development Panel Background Rep. 6, 89 pp.

  • Griffies, S. M., 2009: Elements of MOM4p1. NOAA/Geophysical Fluid Dynamics Laboratory Ocean Group Tech. Rep. 6, 444 pp. [Available online at http://mdl-mom5.herokuapp.com/web/docs/project/MOM4p1_manual.pdf; http://www.gfdl.noaa.gov/fms/.]

  • Helland-Hansen, B., 1934: The Sognefjord section: Oceanographic observations in the northernmost part of the North Sea and the southern part of the Norwegian Sea. James Johnstone Memorial Volume, J. Johnstone and R. J. Daniel, Eds., 257–274.

  • Huang, Z., and M. Feng, 2015: Remotely sensed spatial and temporal variability of the Leeuwin Current using MODIS data. Remote Sens. Environ., 166, 214232, doi:10.1016/j.rse.2015.05.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kundu, P. K., and J. P. McCreary, 1986: On the dynamics of the throughflow from the Pacific into the Indian Ocean. J. Phys. Oceanogr., 16, 21912198, doi:10.1175/1520-0485(1986)016<2191:OTDOTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambert, E., D. Le Bars, and W. P. M. de Ruijter, 2016: The connection of the Indonesian Throughflow, South Indian Ocean Countercurrent and the Leeuwin Current. Ocean Sci., 12, 771780, doi:10.5194/os-12-771-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maltrud, M. E., R. D. Smith, A. J. Semtner, and R. C. Malone, 1998: Global eddy-resolving ocean simulation driven by 1985–1995 atmospheric winds. J. Geophys. Res., 103, 30 82530 853, doi:10.1029/1998JC900013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchuk, G. I., A. J. Sarkisian, and V. P. Kochergin, 1973: Calculations of flows in a baroclinic ocean: Numerical methods and results. Geophys. Astrophys. Fluid Dyn., 5, 8999, doi:10.1080/03091927308236109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masumoto, Y., and Coauthors, 2004: A fifty-year eddy-resolving simulation of the world ocean: Preliminary outcomes of OFES (OGCM for the Earth Simulator). J. Earth Simul., 1, 3556. [Available online at http://www.jamstec.go.jp/esc/publication/journal/jes_vol.1/pdf/JES1-3.2-masumoto.pdf.]

    • Search Google Scholar
    • Export Citation
  • Maximenko, N., O. V. Melnichenko, P. P. Niller, and H. Sasaki, 2008: Stationary mesoscale jet-like features in the ocean. Geophys. Res. Lett., 35, L08603, doi:10.1029/2008GL033267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maximenko, N., P. Niiler, M.-H. Rio, O. Melnichenko, L. Centurioni, D. Chambers, V. Zlotnicki, and B. Galperin, 2009: Mean dynamic topography of the ocean derived from satellite and drifting buoy data using three different techniques. J. Atmos. Oceanic Technol., 26, 19101919, doi:10.1175/2009JTECHO672.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., S. R. Shetye, and P. K. Kundu, 1986: Thermohaline forcing of eastern boundary currents: With application to the circulation off the west coast of Australia. J. Mar. Res., 44, 7192, doi:10.1357/002224086788460184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., P. K. Kundu, and S.-Y. Chao, 1987: On the dynamics of the California Current System. J. Mar. Res., 45, 132, doi:10.1357/002224087788400945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menezes, V. V., H. E. Phillips, A. Schiller, C. M. Domingues, and N. L. Bindoff, 2013: Salinity dominance on the Indian Ocean Eastern Gyral Current. Geophys. Res. Lett., 40, 57165721, doi:10.1002/2013GL057887.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menezes, V. V., H. E. Phillips, A. Schiller, N. L. Bindoff, C. M. Domingues, and M. L. Vianna, 2014: South Indian Countercurrent and associated fronts. J. Geophys. Res. Oceans, 119, 67636791, doi:10.1002/2014JC010076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meuleners, M. J., C. B. Pattiaratchi, and G. N. Ivey, 2007: Numerical modelling of the mean flow characteristics of the Leeuwin Current System. Deep-Sea Res. II, 54, 837858, doi:10.1016/j.dsr2.2007.02.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meuleners, M. J., G. N. Ivey, and C. B. Pattiaratchi, 2008: A numerical study of the eddying characteristics of the Leeuwin Current System. Deep-Sea Res. I, 55, 261276, doi:10.1016/j.dsr.2007.12.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyers, G., R. J. Bailey, and A. P. Worby, 1995: Geostrophic transport of Indonesian Throughflow. Deep-Sea Res. I, 42, 11631174, doi:10.1016/0967-0637(95)00037-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Middleton, J. F., and M. Cirano, 2002: A northern boundary current along Australia’s southern shelves: The Flinders Current. J. Geophys. Res., 107, 3129, doi:10.1029/2000JC000701.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mountain, D. G., 1974: Preliminary analysis of Beaufort shelf circulation in summer. The Coast and Shelf of the Beaufort Sea: Proceedings of a Symposium on Beaufort Sea Coast and Shelf Research, J. C. Reed and J. E. Sater, Eds., Arctic Institute of North America, 27–48.

  • Nakano, H., and H. Hasumi, 2005: A series of zonal jets embedded in the broad zonal flows in the Pacific obtained in eddy-permitting ocean general circulation models. J. Phys. Oceanogr., 35, 474488, doi:10.1175/JPO2698.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Geographical Data Center, 1988: Data announcement 88-MGG-02: Digital relief of the surface of the earth. NOAA/National Geophysical Data Center, 2 pp.

  • Oke, P. R., and Coauthors, 2013: Evaluation of a near-global eddy-resolving ocean model. Geosci. Model Dev., 6, 591615, doi:10.5194/gmd-6-591-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palastanga, V., P. J. van Leeuwen, M. W. Schouten, and W. P. M. de Ruijter, 2007: Flow structure and variability in the subtropical Indian Ocean: Instability of the South Indian Ocean Countercurrent. J. Geophys. Res., 112, C01001, doi:10.1029/2005JC003395.

    • Search Google Scholar
    • Export Citation
  • Pearce, A., and C. B. Pattiaratchi, 1999: The Capes Current: A summer countercurrent flowing past Cape Leeuwin and Cape Naturaliste, Western Australia. Cont. Shelf Res., 19, 401420, doi:10.1016/S0278-4343(98)00089-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., D. L. Rudnick, S. Chen, and Y. Kashino, 2013: Quasi-stationary North Equatorial Undercurrent jets across the tropical North Pacific Ocean. Geophys. Res. Lett., 40, 21832187, doi:10.1002/grl.50394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rennie, S. J., C. B. Pattiaratchi, and R. D. McCauley, 2007: Eddy formation through the interaction between the Leeuwin Current, Leeuwin Undercurrent and topography. Deep-Sea Res. II, 54, 818836, doi:10.1016/j.dsr2.2007.02.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, doi:10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ridgway, K. R., and J. R. Dunn, 2003: Mesoscale structure of the mean East Australian Current System and its relationship with topography. Prog. Oceanogr., 56, 189222, doi:10.1016/S0079-6611(03)00004-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ridgway, K. R., and J. Godfrey, 2015: The source of the Leeuwin Current seasonality. J. Geophys. Res. Oceans, 120, 68436864, doi:10.1002/2015JC011049.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ridgway, K. R., J. R. Dunn, and J. L. Wilkin, 2002: Ocean interpolation by four-dimensional weighted least squares—Application to the waters around Australasia. J. Atmos. Oceanic Technol., 19, 13571375, doi:10.1175/1520-0426(2002)019<1357:OIBFDW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sælen, O. H., 1959: Preliminary report on the hydrographic sections made in the Norwegian Sea 1958 by Geofysisk Institutt, Bergen. Special IGY Meeting ICES CM Doc. 46, 6 pp. [Available online at http://hdl.handle.net/11250/101261.]

  • Sasaki, H., M. Nonaka, Y. Masumoto, Y. Sasai, H. Uehara, and H. Sakuma, 2008: An eddy-resolving hindcast simulation of the quasiglobal ocean from 1950 to 2003 on the Earth Simulator. High Resolution Numerical Modelling of the Atmosphere and Ocean, K. Hamilton and W. Ohfuchi, Eds., Springer, 157–185.

    • Crossref
    • Export Citation
  • Saville-Kent, W., 1897: The Naturalist in Australia. Chapman & Hall, 302 pp.

    • Crossref
    • Export Citation
  • Schott, F. A., S.-P. Xie, and J. P. McCreary, 2009: Indian Ocean circulation and climate variability. Rev. Geophys., 47, RG1002, doi:10.1029/2007RG000245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheng, J., and K. R. Thompson, 1996: A robust method for diagnosing regional shelf circulation from scattered density profiles. J. Geophys. Res., 101, 25 64725 659, doi:10.1029/96JC01331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siedler, G., M. Rouault, and J. R. E. Lutjeharms, 2006: Structure and origin of the subtropical South Indian Ocean Countercurrent. Geophys. Res. Lett., 33, L24609, doi:10.1029/2006GL027399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. L., A. Huyer, J. S. Godfrey, and J. A. Church, 1991: The Leeuwin Current off Western Australia, 1986–1987. J. Phys. Oceanogr., 21, 323345, doi:10.1175/1520-0485(1991)021<0323:TLCOWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taguchi, B., R. Furue, N. Komori, A. Kuwano-Yoshida, M. Nonaka, H. Sasaki, and W. Ohfuch, 2012: Deep oceanic zonal jets constrained by fine-scale wind stress curls in the South Pacific Ocean: A high-resolution coupled GCM study. Geophys. Res. Lett., 39, L08602, doi:10.1029/2012GL051248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. O. R. Y., 1984: Observations of the Leeuwin Current off Western Australia. J. Phys. Oceanogr., 14, 623628, doi:10.1175/1520-0485(1984)014<0623:OOTLCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. O. R. Y., 1987: Continental-shelf-scale model of the Leeuwin Current. J. Mar. Res., 45, 813827, doi:10.1357/002224087788327190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., and J. H. Middleton, 1989: On the dynamics of the Leeuwin Current. J. Phys. Oceanogr., 19, 626648, doi:10.1175/1520-0485(1989)019<0626:OTDOTL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., and J. H. Middleton, 1990: An analytic model for the Leeuwin Current off West Australia. Cont. Shelf Res., 10, 105122, doi:10.1016/0278-4343(90)90025-H.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijffels, S. E., G. Meyers, and J. S. Godfrey, 2008: A 20-yr average of the Indonesian Throughflow: Regional currents and the interbasin exchange. J. Phys. Oceanogr., 38, 19651978, doi:10.1175/2008JPO3987.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woo, L. M., and C. B. Pattiaratchi, 2008: Hydrography and water masses off the western Australian coast. Deep-Sea Res. I, 55, 10901104, doi:10.1016/j.dsr.2008.05.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woo, L. M., C. B. Pattiaratchi, and W. W. Schroeder, 2006: Dynamics of the Ningaloo Current off Point Cloates, Western Australia. Mar. Freshwater Res., 57, 291301, doi:10.1071/MF05106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yit Sen Bull, C., and E. van Sebille, 2016: Sources, fate, and pathways of Leeuwin Current water in the Indian Ocean and Great Australian Bight: A Lagrangian study in an eddy-resolving ocean model. J. Geophys. Res. Oceans, 121, 16261639, doi:10.1002/2015JC011486.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1086 409 8
PDF Downloads 585 148 6