Entrainment in a Dense Current Flowing Down a Rough Sloping Bottom in a Rotating Fluid

Luisa Ottolenghi University of Roma Tre, Rome, Italy

Search for other papers by Luisa Ottolenghi in
Current site
Google Scholar
PubMed
Close
,
Claudia Cenedese Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Claudia Cenedese in
Current site
Google Scholar
PubMed
Close
, and
Claudia Adduce University of Roma Tre, Rome, Italy

Search for other papers by Claudia Adduce in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Dense oceanic overflows descend over the rough topography of the continental slope entraining and mixing with surrounding waters. The associated dilution dictates the fate of these currents and thus is of fundamental importance to the formation of deep water masses. The entrainment in a dense current flowing down a sloping bottom in a rotating homogeneous fluid is investigated using laboratory experiments, focusing on the influence of the bottom roughness on the flow dynamics. The roughness is idealized by an array of vertical rigid cylinders and both their spacing and height are varied as well as the inclination of the sloping bottom. The presence of the roughness is generally observed to decelerate the dense current, with a consequent reduction of the Froude number, when compared to the smooth bottom configuration. However, the dilution of the dense current due to mixing with the ambient fluid is enhanced by the roughness elements, especially for low Froude numbers. When the entrainment due to shear instability at the interface between the dense current and the ambient fluid is low, the additional turbulence and mixing arising at the bottom of the dense current due to the roughness elements strongly affects the dilution of the current. Finally, a strong dependence of the entrainment parameter on the Reynolds number is observed.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JPO-D-16-0175.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Luisa Ottolenghi, luisa.ottolenghi@uniroma3.it

Abstract

Dense oceanic overflows descend over the rough topography of the continental slope entraining and mixing with surrounding waters. The associated dilution dictates the fate of these currents and thus is of fundamental importance to the formation of deep water masses. The entrainment in a dense current flowing down a sloping bottom in a rotating homogeneous fluid is investigated using laboratory experiments, focusing on the influence of the bottom roughness on the flow dynamics. The roughness is idealized by an array of vertical rigid cylinders and both their spacing and height are varied as well as the inclination of the sloping bottom. The presence of the roughness is generally observed to decelerate the dense current, with a consequent reduction of the Froude number, when compared to the smooth bottom configuration. However, the dilution of the dense current due to mixing with the ambient fluid is enhanced by the roughness elements, especially for low Froude numbers. When the entrainment due to shear instability at the interface between the dense current and the ambient fluid is low, the additional turbulence and mixing arising at the bottom of the dense current due to the roughness elements strongly affects the dilution of the current. Finally, a strong dependence of the entrainment parameter on the Reynolds number is observed.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JPO-D-16-0175.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Luisa Ottolenghi, luisa.ottolenghi@uniroma3.it

Supplementary Materials

    • Supplemental Materials (AVI 52.9 MB)
Save
  • Cenedese, C., and C. Adduce, 2008: Mixing in a density-driven current flowing down a slope in a rotating fluid. J. Fluid Mech., 604, 369388, doi:10.1017/S0022112008001237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cenedese, C., and C. Adduce, 2010: A new parameterization for entrainment in overflows. J. Phys. Oceanogr., 40, 18351850, doi:10.1175/2010JPO4374.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cenedese, C., J. A. Whitehead, T. Ascarelli, and M. Ohiwa, 2004: A dense current flowing down a sloping bottom in a rotating fluid. J. Phys. Oceanogr., 34, 188203, doi:10.1175/1520-0485(2004)034<0188:ADCFDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cenedese, C., R. Nokes, and J. Hyatt, 2017: Lock-exchange gravity currents over rough bottoms. Environ. Fluid Mech., doi:10.1007/s10652-016-9501-0, in press.

    • Search Google Scholar
    • Export Citation
  • Chang, Y., X. Xu, T. Özgökmen, E. Chassignet, H. Peters, and P. Fischer, 2005: Comparison of gravity current mixing parameterizations and calibration using a high-resolution 3D nonhydrostatic spectral element model. Ocean Modell., 10, 342368, doi:10.1016/j.ocemod.2004.11.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cossu, R., and M. G. Wells, 2010: Coriolis forces influence the secondary circulation of gravity currents flowing in large-scale sinuous submarine channel systems. Geophys. Res. Lett., 37, L17603, doi:10.1029/2010GL044296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cossu, R., M. G. Wells, and A. Wåhlin, 2010: Influence of the Coriolis force on the velocity structure of gravity currents in straight submarine channel systems. J. Geophys. Res. Oceans, 115, C11016, doi:10.1029/2010JC006208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dallimore, C. J., J. Imberger, and T. Ishikawa, 2001: Entrainment and turbulence in saline underflow in Lake Ogawara. J. Hydraul. Eng., 127, 937948, doi:10.1061/(ASCE)0733-9429(2001)127:11(937).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellison, T. H., and J. S. Turner, 1959: Turbulent entrainment in stratified flows. J. Fluid Mech., 6, 423448, doi:10.1017/S0022112059000738.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ezer, T., 2005: Entrainment, diapycnal mixing and transport in three-dimensional bottom gravity current simulations using the Mellor–Yamada turbulence scheme. Ocean Modell., 9, 151168, doi:10.1016/j.ocemod.2004.06.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernandez, R. L., and J. Imberger, 2006: Bed roughness induced entrainment in a high Richardson number underflow. J. Hydraul. Res., 44, 725738, doi:10.1080/00221686.2006.9521724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Girton, J. B., and T. B. Sanford, 2003: Descent and modification of the overflow plume in the Denmark Strait. J. Phys. Oceanogr., 33, 13511364, doi:10.1175/1520-0485(2003)033<1351:DAMOTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hacker, J., P. Linden, and S. Dalziel, 1996: Mixing in lock-release gravity currents. Dyn. Atmos. Oceans, 24, 183195, doi:10.1016/0377-0265(95)00443-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanquiez, V., T. Mulder, P. Lecroart, E. Gonthier, E. Marchès, and M. Voisset, 2007: High resolution seafloor images in the Gulf of Cadiz, Iberian margin. Mar. Geol., 246, 4259, doi:10.1016/j.margeo.2007.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hebbert, B., J. Patterson, I. Loh, and J. Imberger, 1979: Collie river underflow into the Wellington Reservoir. J. Hydraul. Div., 105, 533545.

    • Search Google Scholar
    • Export Citation
  • Hebert, D. A., and S. M. de Bruyn Kops, 2006: Predicting turbulence in flows with strong stable stratification. Phys. Fluids, 18, 066602, doi:10.1063/1.2204987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hernández-Molina, F. J., and Coauthors, 2006: The contourite depositional system of the Gulf of Cadiz: A sedimentary model related to the bottom current activity of the Mediterranean outflow water and its interaction with the continental margin. Deep-Sea Res. II, 53, 14201463, doi:10.1016/j.dsr2.2006.04.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keeton, J., R. Searle, C. Peirce, B. Parsons, R. White, M. Sinha, B. Murton, and L. Parson, 1997: Bathymetry of the Reykjanes Ridge. Mar. Geophys. Res., 19, 5564, doi:10.1023/A:1004266721393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legg, S., R. Hallberg, and J. Girton, 2006: Comparison of entrainment in overflows simulated by z-coordinate, isopycnal and non-hydrostatic models. Ocean Modell., 11, 6997, doi:10.1016/j.ocemod.2004.11.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luhar, M., J. Rominger, and H. Nepf, 2008: Interaction between flow, transport and vegetation spatial structure. Environ. Fluid Mech., 8, 423439, doi:10.1007/s10652-008-9080-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mauritzen, C., J. Price, T. Sanford, and D. Torres, 2005: Circulation and mixing in the Faroese Channels. Deep-Sea Res. I, 52, 883913, doi:10.1016/j.dsr.2004.11.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Negretti, M., D. Zhu, and G. Jirka, 2008: The effect of bottom roughness in two-layer flows down a slope. Dyn. Atmos. Oceans, 45, 4668, doi:10.1016/j.dynatmoce.2008.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nepf, H., 2012: Flow and transport in regions with aquatic vegetation. Annu. Rev. Fluid Mech., 44, 123142, doi:10.1146/annurev-fluid-120710-101048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nogueira, H., C. Adduce, E. Alves, and M. Franca, 2013: Analysis of lock-exchange gravity currents over smooth and rough beds. J. Hydraul. Res., 51, 417431, doi:10.1080/00221686.2013.798363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nogueira, H., C. Adduce, E. Alves, and M. Franca, 2014: Dynamics of the head of gravity currents. Environ. Fluid Mech., 14, 519540, doi:10.1007/s10652-013-9315-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noh, Y., and H. Fernando, 1991: Gravity current propagation along an incline in the presence of boundary mixing. J. Geophys. Res. Oceans, 96, 12 58612 592, doi:10.1029/90JC02488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noh, Y., and H. Fernando, 1992: The motion of a buoyant cloud along an incline in the presence of boundary mixing. J. Fluid Mech., 235, 557577, doi:10.1017/S0022112092001228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ottolenghi, L., C. Adduce, R. Inghilesi, V. Armenio, and F. Roman, 2016a: Entrainment and mixing in unsteady gravity currents. J. Hydraul. Res., 54, 541557, doi:10.1080/00221686.2016.1174961.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ottolenghi, L., C. Adduce, R. Inghilesi, F. Roman, and V. Armenio, 2016b: Mixing in lock-release gravity currents propagating up a slope. Phys. Fluids, 28, 056604, doi:10.1063/1.4948760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Özgökmen, T. M., and P. F. Fischer, 2008: On the role of bottom roughness in overflows. Ocean Modell., 20, 336361, doi:10.1016/j.ocemod.2007.10.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Özgökmen, T. M., P. F. Fischer, J. Duan, and T. Iliescu, 2004: Entrainment in bottom gravity currents over complex topography from three-dimensional nonhydrostatic simulations. Geophys. Res. Lett., 31, L13212, doi:10.1029/2004GL020186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Özgökmen, T., T. Iliescu, and P. Fischer, 2009: Reynolds number dependence of mixing in a lock-exchange system from direct numerical and large eddy simulations. Ocean Modell., 30, 190206, doi:10.1016/j.ocemod.2009.06.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, G., M. Garcia, Y. Fukushima, and W. Yu, 1987: Experiments on turbidity currents over an erodible bed. J. Hydraul. Res., 25, 123147, doi:10.1080/00221688709499292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, H., W. E. Johns, A. S. Bower, and D. M. Fratantoni, 2005: Mixing and entrainment in the red sea outflow plume. Part I: Plume structure. J. Phys. Oceanogr., 35, 569583, doi:10.1175/JPO2679.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., and M. O. Barringer, 1994: Outflows and deep water production by marginal seas. Prog. Oceanogr., 33, 161200, doi:10.1016/0079-6611(94)90027-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., and Coauthors, 1993: Mediterranean outflow mixing and dynamics. Science, 259, 12771282, doi:10.1126/science.259.5099.1277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riley, J. J., and S. M. de Bruyn Kops, 2003: Dynamics of turbulence strongly influenced by buoyancy. Phys. Fluids, 15, 20472059, doi:10.1063/1.1578077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwin, T. J., and W. R. Turrell, 2005: Mixing and advection of a cold water cascade over the Wyville Thomson Ridge. Deep-Sea Res. I, 52, 13921413, doi:10.1016/j.dsr.2005.03.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J. E., 1997: Gravity Currents in the Environment and the Laboratory. 2nd ed. Cambridge University Press, 244 pp.

  • Tanino, Y., and H. M. Nepf, 2008: Laboratory investigation of mean drag in a random array of rigid, emergent cylinders. J. Hydraul. Eng., 134, 3441, doi:10.1061/(ASCE)0733-9429(2008)134:1(34).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanino, Y., H. M. Nepf, and P. S. Kulis, 2005: Gravity currents in aquatic canopies. Water Resour. Res., 41, W12402, doi:10.1029/2005WR004216.

  • Turner, J. S., 1986: Turbulent entrainment: The development of the entrainment assumption and its application to geophysical flows. J. Fluid Mech., 173, 431471, doi:10.1017/S0022112086001222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Umlauf, L., and L. Arneborg, 2009a: Dynamics of rotating shallow gravity currents passing through a channel. Part I: Observation of transverse structure. J. Phys. Oceanogr., 39, 23852401, doi:10.1175/2009JPO4159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Umlauf, L., and L. Arneborg, 2009b: Dynamics of rotating shallow gravity currents passing through a channel. Part II: Analysis. J. Phys. Oceanogr., 39, 24022416, doi:10.1175/2009JPO4164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Umlauf, L., L. Arneborg, R. Hofmeister, and H. Burchard, 2010: Entrainment in shallow rotating gravity currents: A modeling study. J. Phys. Oceanogr., 40, 18191834, doi:10.1175/2010JPO4367.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wåhlin, A., E. Darelius, C. Cenedese, and G. Lane-Serff, 2008: Laboratory observations of enhanced entrainment in dense overflows in the presence of submarine canyons and ridges. Deep-Sea Res. I, 55, 737750, doi:10.1016/j.dsr.2008.02.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wells, M., 2007: Influence of Coriolis forces on turbidity currents and sediment deposition. Particle-Laden Flow, Springer, 331–343.

    • Crossref
    • Export Citation
  • Wells, M., C. Cenedese, and C. Caulfield, 2010: The relationship between flux coefficient and entrainment ratio in density currents. J. Phys. Oceanogr., 40, 27132727, doi:10.1175/2010JPO4225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., Y. Chang, H. Peters, T. Özgökmen, and E. Chassignet, 2006: Parameterization of gravity current entrainment for ocean circulation models using a high-order 3D nonhydrostatic spectral element model. Ocean Modell., 14, 1944, doi:10.1016/j.ocemod.2006.02.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., and H. M. Nepf, 2008: Density-driven exchange flow between open water and an aquatic canopy. Water Resour. Res., 44, W08417, doi:10.1029/2007WR006676.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1098 528 141
PDF Downloads 540 83 5