Energy Exchange between the Mesoscale Oceanic Eddies and Wind-Forced Near-Inertial Oscillations

Zhao Jing Department of Oceanography, Texas A&M University, College Station, Texas, and
Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Zhao Jing in
Current site
Google Scholar
PubMed
Close
,
Lixin Wu Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Lixin Wu in
Current site
Google Scholar
PubMed
Close
, and
Xiaohui Ma Department of Oceanography, Texas A&M University, College Station, Texas, and
Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Xiaohui Ma in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, the energy exchange between mesoscale eddies and wind-forced near-inertial oscillations (NIOs) is theoretically analyzed using a slab mixed layer model modified by including the geostrophic flow. In the presence of strain, there is a permanent energy transfer from mesoscale eddies to NIOs forced by isotropic wind stress. The energy transfer efficiency, that is, the ratio of the energy transfer rate to the near-inertial wind work, is proportional to , where S2 is the total strain variance, is the effective Coriolis frequency, and ζ is the relative vorticity. The theories derived from the modified slab mixed layer model are verified by the realistic numerical simulation obtained from a coupled regional climate model (CRCM) configured over the North Pacific. Pronounced energy transfer from mesoscale eddies to wind-forced NIOs is localized in the Kuroshio Extension region associated with both strong near-inertial wind work and strain variance. The energy transfer efficiency in anticyclonic eddies is about twice the value in cyclonic eddies in the Kuroshio Extension region because of the influence of ζ on feff, which may contribute to shaping the dominance of cyclonic eddies than anticyclonic eddies in that region.

Denotes content that is immediately available upon publication as open access.

This article is licensed under a Creative Commons Attribution 4.0 license (http://creativecommons.org/licenses/by/4.0/).

© 2017 American Meteorological Society.

Corresponding author e-mail: Zhao Jing, jingzhao198763@tamu.edu

Abstract

In this study, the energy exchange between mesoscale eddies and wind-forced near-inertial oscillations (NIOs) is theoretically analyzed using a slab mixed layer model modified by including the geostrophic flow. In the presence of strain, there is a permanent energy transfer from mesoscale eddies to NIOs forced by isotropic wind stress. The energy transfer efficiency, that is, the ratio of the energy transfer rate to the near-inertial wind work, is proportional to , where S2 is the total strain variance, is the effective Coriolis frequency, and ζ is the relative vorticity. The theories derived from the modified slab mixed layer model are verified by the realistic numerical simulation obtained from a coupled regional climate model (CRCM) configured over the North Pacific. Pronounced energy transfer from mesoscale eddies to wind-forced NIOs is localized in the Kuroshio Extension region associated with both strong near-inertial wind work and strain variance. The energy transfer efficiency in anticyclonic eddies is about twice the value in cyclonic eddies in the Kuroshio Extension region because of the influence of ζ on feff, which may contribute to shaping the dominance of cyclonic eddies than anticyclonic eddies in that region.

Denotes content that is immediately available upon publication as open access.

This article is licensed under a Creative Commons Attribution 4.0 license (http://creativecommons.org/licenses/by/4.0/).

© 2017 American Meteorological Society.

Corresponding author e-mail: Zhao Jing, jingzhao198763@tamu.edu
Save
  • Alford, M. H., 2001: Internal swell generation: The spatial distribution of energy flux from the wind to mixed layer near-inertial motions. J. Phys. Oceanogr., 31, 23592368, doi:10.1175/1520-0485(2001)031<2359:ISGTSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., 2003: Improved global maps and 54-years history of wind-work on ocean inertial motions. Geophys. Res. Lett., 30, 1424, doi:10.1029/2002GL016614.

    • Search Google Scholar
    • Export Citation
  • Balmforth, N. J., S. G. Llewellyn Smith, and W. R. Young, 1998: Enhanced dispersion of near-inertial waves in an idealized geostrophic flow. J. Mar. Res., 56, 140, doi:10.1357/002224098321836091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Batchelor, G. K., 1967: An Introduction to Fluid Dynamics. Cambridge University Press, 615 pp.

  • Bühler, O., and M. E. McIntyre, 2005: Wave capture and wave–vortex duality. J. Fluid Mech., 534, 6795, doi:10.1017/S0022112005004374.

  • Camargo, S. J., and A. H. Sobel, 2005: Western North Pacific tropical cyclone intensity and ENSO. J. Climate, 18, 29963006, doi:10.1175/JCLI3457.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaigneau, A., O. Pizarro, and W. Rojas, 2008: Global climatology of near-inertial current characteristics from Lagrangian observations. Geophys. Res. Lett., 35, L13603, doi:10.1029/2008GL034060.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., and Y. Fu, 2002: Interdecadal variations in Northern Hemisphere winter storm track intensity. J. Climate, 15, 642658, doi:10.1175/1520-0442(2002)015<0642:IVINHW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavanne, C. P., E. Firing, and F. Ascani, 2012: Inertial oscillations in geostrophic flow: Is the inertial frequency shifted by ζ/2 or by ζ? J. Phys. Oceanogr., 42, 884888, doi:10.1175/JPO-D-12-031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, Y. H., C. R. Ho, Q. N. Zheng, and N. J. Kuo, 2014: Statistical characteristics of mesoscale eddies in the North Pacific derived from satellite altimetry. Remote Sens., 6, 51645183, doi:10.3390/rs6065164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danioux, E., J. Vanneste, P. Klein, and H. Sasaki, 2012: Spontaneous inertia-gravity-wave generation by surface-intensified turbulence. J. Fluid Mech., 699, 153173, doi:10.1017/jfm.2012.90.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 1985: The energy flux from the wind to near-inertial motions in the surface mixed layer. J. Phys. Oceanogr., 15, 10431059, doi:10.1175/1520-0485(1985)015<1043:TEFFTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 2014: Turbulence in the upper-ocean mixed layer. Annu. Rev. Mar. Sci., 6, 101115, doi:10.1146/annurev-marine-010213-135138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elipot, S., and R. Lumpkin, 2008: Spectral description of oceanic near-surface variability. Geophys. Res. Lett., 35, L05606, doi:10.1029/2007GL032874.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and C. Wunsch, 2009: Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annu. Rev. Fluid Mech., 41, 253282, doi:10.1146/annurev.fluid.40.111406.102139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fomin, L. M., 1973: Inertial oscillations in a horizontally inhomogeneous current velocity field. Izv., Atmos. Oceanic Phys., 9, 3740.

    • Search Google Scholar
    • Export Citation
  • Franks, P. J. S., 1995: Thin layers of phytoplankton: A model of formation by near-inertial wave shear. Deep-Sea Res. I, 42, 7591, doi:10.1016/0967-0637(94)00028-Q.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Furuichi, N., T. Hibiya, and Y. Niwa, 2008: Model-predicted distribution of wind-induced internal wave energy in the world’s oceans. J. Geophys. Res., 113, C09034, doi:10.1029/2008JC004768.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., 2001: What is the “near-inertial” band and why is it different from the rest of the internal wave spectrum? J. Phys. Oceanogr., 31, 962971, doi:10.1175/1520-0485(2001)031<0962:WITNIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gertz, A., and D. N. Straub, 2009: Near-inertial oscillations and the damping of midlatitude gyres: A modeling study. J. Phys. Oceanogr., 39, 23382350, doi:10.1175/2009JPO4058.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., 1984: On the response of the ocean to a travelling storm: Parameters and scales. J. Phys. Oceanogr., 14, 5978, doi:10.1175/1520-0485(1984)014<0059:OTROTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, J., Y. Lu, and W. Perrie, 2005: Estimating the energy flux from the wind to ocean inertial motions: The sensitivity to surface wind fields. Geophys. Res. Lett., 32, L15610, doi:10.1029/2005GL023289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jing, Z., and L. Wu, 2014: Intensified diapycnal mixing in the midlatitude western boundary current. Sci. Rep., 4, 7412, doi:10.1038/srep07412.

    • Search Google Scholar
    • Export Citation
  • Jing, Z., L. Wu, and X. Ma, 2016: Sensitivity of near-inertial internal waves to spatial interpolations of wind stress in ocean generation circulation models. Ocean Modell., 99, 1521, doi:10.1016/j.ocemod.2015.12.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jochum, M., B. Briegleb, G. Danabasoglu, W. Large, N. Norton, S. Jayne, M. Alford, and F. Bryan, 2013: The impact of oceanic near-inertial waves on climate. J. Climate, 26, 28332844, doi:10.1175/JCLI-D-12-00181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P., B. L. Hua, and X. Carton, 2003: Emergence of cyclonic structures due to the interaction between near-inertial oscillations and mesoscale eddies. Quart. J. Roy. Meteor. Soc., 129, 25132525, doi:10.1256/qj.02.111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P., G. Lapeyre, and W. G. Large, 2004: Wind ringing of the ocean in presence of mesoscale eddies. Geophys. Res. Lett., 31, L15306, doi:10.1029/2004GL020274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., 1985: Near-inertial propagation in geostrophic shear. J. Phys. Oceanogr., 15, 544565, doi:10.1175/1520-0485(1985)015<0544:NIWPIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary-layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leung, L. R., Y.-H. Kuo, and J. Tribbia, 2006: Research needs and directions of regional climate modeling using WRF and CCSM. Bull. Amer. Meteor. Soc., 87, 17471751, doi:10.1175/BAMS-87-12-1747.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, X., and Coauthors, 2016: Western boundary currents regulated by interaction between ocean eddies and the atmosphere. Nature, 535, 533537, doi:10.1038/nature18640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, A. M., H. G. Arango, E. Di Lorenzo, D. B. Cornuelle, A. J. Miller, and D. J. Nielson, 2004: A comprehensive ocean prediction and analysis system based on the tangent linear and adjoint of a regional ocean model. Ocean Modell., 7, 227258, doi:10.1016/j.ocemod.2003.11.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, P., 1976: On the diffusion of momentum and mass by internal gravity waves. J. Fluid Mech., 77, 789823, doi:10.1017/S0022112076002899.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, doi:10.1016/S0967-0637(98)00070-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J. J., K. Kim, and R. W. Schmitt, 2009: Global distribution of the decay timescale of mixed layer inertial motions observed by satellite-tracked drifters. J. Geophys. Res., 114, C11010, doi:10.1029/2008JC005216.

    • Search Google Scholar
    • Export Citation
  • Plueddemann, A. J., and J. T. Farrar, 2006: Observations and models of the energy flux from the wind to mixed layer inertial currents. Deep-Sea Res. I, 53, 530, doi:10.1016/j.dsr2.2005.10.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., and R. C. Millard, 1970: Comparison between observed and simulated wind-generated inertial oscillations. Deep-Sea Res. Oceanogr. Abstr., 17, 813821, doi:10.1016/0011-7471(70)90043-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., 2010: Mesoscale eddy–internal wave coupling. Part II: Energetics and results from PolyMode. J. Phys. Oceanogr., 40, 789801, doi:10.1175/2009JPO4039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., R. A. Weller, and R. Pinkel, 1986: Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res., 91, 84118427, doi:10.1029/JC091iC07p08411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Provenzale, A., 1999: Transport by coherent barotropic vortices. Annu. Rev. Fluid Mech., 31, 5593, doi:10.1146/annurev.fluid.31.1.55.

  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, doi:10.1016/j.ocemod.2004.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., 2012: On the effects of frontogenetic strain on symmetric instability and inertia–gravity waves. J. Fluid Mech., 711, 620640, doi:10.1017/jfm.2012.416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vanneste, J., 2013: Balance and spontaneous wave generation in geophysical flows. Annu. Rev. Fluid Mech., 45, 147172, doi:10.1146/annurev-fluid-011212-140730.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weller, R. A., 1982: The relation of near-inertial motions observed in the mixed layer during the JASIN (1978) experiment to the local wind stress and to the quasi-geostrophic flow field. J. Phys. Oceanogr., 12, 11221136, doi:10.1175/1520-0485(1982)012<1122:TRONIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitt, D. B., and L. N. Thomas, 2015: Resonant generation and energetics of wind-forced near-inertial motions in a geostrophic flow. J. Phys. Oceanogr., 45, 181208, doi:10.1175/JPO-D-14-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314, doi:10.1146/annurev.fluid.36.050802.122121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, J.-H., and J. Vanneste, 2015: A generalised-Lagrangian-mean model of the interactions between near-inertial waves and mean flow. J. Fluid Mech., 774, 143169, doi:10.1017/jfm.2015.251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, W. R., and M. Ben Jelloul, 1997: Propagation of near-inertial oscillations through a geostrophic flow. J. Mar. Res., 55, 735766, doi:10.1357/0022240973224283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, W. R., P. B. Rhines, and C. J. R. Garrett, 1982: Shear-flow dispersion, internal waves and horizontal mixing in the ocean. J. Phys. Oceanogr., 12, 515527, doi:10.1175/1520-0485(1982)012<0515:SFDIWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, X., R. J. Greatbatch, and J. Zhao, 2005: Enhanced vertical propagation of storm-induced near-inertial energy in an eddying ocean channel model. Geophys. Res. Lett., 32, L18602, doi:10.1029/2005GL023643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, X., R. J. Greatbatch, and C. Eden, 2007: Spreading of near-inertial energy in a 1/12° model of the North Atlantic Ocean. Geophys. Res. Lett., 34, L10609, doi:10.1029/2007GL029895.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 588 235 26
PDF Downloads 539 204 22