Decadal Variability in the South Pacific Subtropical Countercurrent and Regional Mesoscale Eddy Activity

Seth Travis University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Seth Travis in
Current site
Google Scholar
PubMed
Close
and
Bo Qiu University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Bo Qiu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Decadal variability of eddy activity in the western, subtropical South Pacific is examined using the past two decades of satellite altimetry data. Between 21° and 29°S, there is a band of heightened eddy activity. In this region, the eastward South Pacific Subtropical Countercurrent (STCC) overlays the westward South Equatorial Current (SEC). This vertically sheared STCC–SEC system is subject to baroclinic instabilities. By using the European Centre for Medium-Range Weather Forecasts (ECMWF) Ocean Reanalysis System, version 4 (ORAS4), data and verifying with the gridded Argo float data, low-frequency variations in the state of the ocean in this region are investigated. It is found that the low-frequency changes in the shearing and stratification of the STCC–SEC region simultaneously work to modulate the strength of baroclinic instabilities, as measured through the baroclinic growth rate. These changes in the strength of the instabilities consequently affect the observed eddy activity. Using a linearization of the baroclinic growth rate, the contribution to the variability from the changes in shearing is found to be roughly twice as large as those from changes in stratification. Additionally, changes in the temperature and salinity fields are both found to have significant impacts on the low-frequency variability of shearing and stratification, for which salinity changes are responsible for 50%–75% of the variability as caused by temperature changes. However, the changes in all these parameters do not occur concurrently and can alternately work to negate or augment each other.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Seth Travis, stravis3@hawaii.edu

Abstract

Decadal variability of eddy activity in the western, subtropical South Pacific is examined using the past two decades of satellite altimetry data. Between 21° and 29°S, there is a band of heightened eddy activity. In this region, the eastward South Pacific Subtropical Countercurrent (STCC) overlays the westward South Equatorial Current (SEC). This vertically sheared STCC–SEC system is subject to baroclinic instabilities. By using the European Centre for Medium-Range Weather Forecasts (ECMWF) Ocean Reanalysis System, version 4 (ORAS4), data and verifying with the gridded Argo float data, low-frequency variations in the state of the ocean in this region are investigated. It is found that the low-frequency changes in the shearing and stratification of the STCC–SEC region simultaneously work to modulate the strength of baroclinic instabilities, as measured through the baroclinic growth rate. These changes in the strength of the instabilities consequently affect the observed eddy activity. Using a linearization of the baroclinic growth rate, the contribution to the variability from the changes in shearing is found to be roughly twice as large as those from changes in stratification. Additionally, changes in the temperature and salinity fields are both found to have significant impacts on the low-frequency variability of shearing and stratification, for which salinity changes are responsible for 50%–75% of the variability as caused by temperature changes. However, the changes in all these parameters do not occur concurrently and can alternately work to negate or augment each other.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Seth Travis, stravis3@hawaii.edu
Save
  • Adcock, S. T., and D. P. Marshall, 2000: Interactions between geostrophic eddies and the mean circulation over large-scale bottom topography. J. Phys. Oceanogr., 30, 32233238, doi:10.1175/1520-0485(2000)030<3223:IBGEAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, D. L., and P. D. Killworth, 1977: Spin-up of a stratified ocean, with topography. Deep-Sea Res., 24, 709732, doi:10.1016/0146-6291(77)90495-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., K. Mogensen, and A. T. Weaver, 2013: Evaluation of the ECMWF ocean reanalysis system ORAS4. Quart. J. Roy. Meteor. Soc., 139, 11321161, doi:10.1002/qj.2063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowen, M. M., P. J. Sutton, and D. Roemmich, 2006: Wind-driven and steric fluctuations of sea surface height in the southwest Pacific. Geophys. Res. Lett., 33, L14617, doi:10.1029/2006GL026160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., 2006: Antarctic ozone depletion causes an intensification of the Southern Ocean super-gyre circulation. Geophys. Res. Lett., 33, L03712, doi:10.1029/2005GL024911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and M. G. Schlax, 1996: Global observations of oceanic Rossby waves. Science, 272, 234238, doi:10.1126/science.272.5259.234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Szoeke, R., 1987: On the wind-driven circulation of the South Pacific Ocean. J. Phys. Oceanogr., 17, 613630, doi:10.1175/1520-0485(1987)017<0613:OTWDCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dewar, W. K., 2002: Baroclinic eddy interaction with isolated topography. J. Phys. Oceanogr., 32, 27892805, doi:10.1175/1520-0485(2002)032<2789:BEIWIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ducet, N., P.-Y. Le Traon, and G. Reverdin, 2000: Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and-2. J. Geophys. Res. Oceans, 105, 19 47719 498, doi:10.1029/2000JC900063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., and Coauthors, 2014: The Southwest Pacific Ocean Circulation and Climate Experiment (SPICE). J. Geophys. Res. Oceans, 119, 76607686, doi:10.1002/2013JC009678.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greatbatch, R., X. Zhai, M. Claus, L. Czeschel, and W. Rath, 2010: Transport driven by eddy momentum fluxes in the Gulf Stream extension region. Geophys. Res. Lett., 37, L24401, doi:10.1029/2010GL045473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, K., S. Rintoul, K. Ridgway, and P. Oke, 2011: Decadal changes in the South Pacific western boundary current system revealed in observations and ocean state estimates. J. Geophys. Res., 116, C01009, doi:10.1029/2009JC005926.

    • Search Google Scholar
    • Export Citation
  • Hosoda, S., T. Ohira, and T. Nakamura, 2008: A monthly mean dataset of global oceanic temperature and salinity derived from Argo float observations. JAMSTEC Rep. Res. Dev., 8, 4759, doi:10.5918/jamstecr.8.47.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp.

  • Kessler, W. S., and L. Gourdeau, 2007: The annual cycle of circulation of the southwest subtropical Pacific, analyzed in an ocean GCM. J. Phys. Oceanogr., 37, 16101627, doi:10.1175/JPO3046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luyten, J., J. Pedlosky, and H. Stommel, 1983: The ventilated thermocline. J. Phys. Oceanogr., 13, 292309, doi:10.1175/1520-0485(1983)013<0292:TVT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martinez, E., A. Ganachaud, J. Lefèvre, and K. Maamaatuaiahutapu, 2009: Central South Pacific thermocline water circulation from a high-resolution ocean model validated against satellite data: Seasonal variability and El Niño 1997–1998 influence. J. Geophys. Res., 114, C05012, doi:10.1029/2008JC004824.

    • Search Google Scholar
    • Export Citation
  • Merle, J., H. Rotschi, and B. Voituriez, 1969: Zonal circulation in the tropical western South Pacific at 170°E. Bull. Japan Soc. Fish. Oceanogr., Special Issue (Prof. Uda’s Commemorative Papers), 91–98.

  • Montecinos, A., and O. Pizarro, 2005: Interdecadal sea surface temperature–sea level pressure coupled variability in the South Pacific Ocean. J. Geophys. Res., 110, C08005, doi:10.1029/2004JC002743.

    • Search Google Scholar
    • Export Citation
  • Morris, M., D. Roemmich, and B. Cornuelle, 1996: Observations of variability in the South Pacific Subtropical Gyre. J. Phys. Oceanogr., 26, 23592380, doi:10.1175/1520-0485(1996)026<2359:OOVITS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., 1999: Seasonal eddy field modulation of the North Pacific Subtropical Countercurrent: TOPEX/Poseidon observations and theory. J. Phys. Oceanogr., 29, 24712486, doi:10.1175/1520-0485(1999)029<2471:SEFMOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2004: Seasonal modulations in the eddy field of the South Pacific Ocean. J. Phys. Oceanogr., 34, 15151527, doi:10.1175/1520-0485(2004)034<1515:SMITEF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2006: Decadal variability in the large-scale sea surface height field of the South Pacific Ocean: Observations and causes. J. Phys. Oceanogr., 36, 17511762, doi:10.1175/JPO2943.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, L. Wu, and S. Kida, 2015: Wind- versus eddy-forced regional sea level trends and variability in the North Pacific Ocean. J. Climate, 28, 15611577, doi:10.1175/JCLI-D-14-00479.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, T., and E. J. Lindstrom, 2002: A climatological interpretation of the circulation in the western South Pacific. J. Phys. Oceanogr., 32, 24922508, doi:10.1175/1520-0485-32.9.2492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reid, J. L., 1986: On the total geostrophic circulation of the South Pacific Ocean: Flow patterns, tracers and transports. Prog. Oceanogr., 16, 161, doi:10.1016/0079-6611(86)90036-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roemmich, D., J. Gilson, R. Davis, P. Sutton, S. Wijffels, and S. Riser, 2007: Decadal spinup of the South Pacific Subtropical Gyre. J. Phys. Oceanogr., 37, 162173, doi:10.1175/JPO3004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, Y. N., S. Minobe, N. Schneider, T. Kagimoto, M. Nonaka, and H. Sasaki, 2008: Decadal sea level variability in the South Pacific in a global eddy-resolving ocean model hindcast. J. Phys. Oceanogr., 38, 17311747, doi:10.1175/2007JPO3915.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, W., M. Fukasawa, J. Garcés-Vargas, L. Bravo, H. Uchida, T. Kawano, and R. Fuenzalida, 2007: Spin-up of South Pacific Subtropical Gyre freshens and cools the upper layer of the eastern South Pacific Ocean. Geophys. Res. Lett., 34, L15608, doi:10.1029/2006GL028842.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsuchiya, M., 1982: On the Pacific upper-water circulation. J. Mar. Res., 40, 777799.

  • Wang, L., C. Koblinsky, S. Howden, and B. Beckley, 1998: Large-scale Rossby wave in the mid-latitude South Pacific from altimetry data. Geophys. Res. Lett., 25, 179182, doi:10.1029/97GL03567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1975: Fluctuations of the dynamic topography in the Pacific Ocean. J. Phys. Oceanogr., 5, 450459, doi:10.1175/1520-0485(1975)005<0450:FOTDTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., and T. Qu, 2014: Low-frequency variability of South Pacific Tropical Water from Argo. Geophys. Res. Lett., 41, 24412446, doi:10.1002/2014GL059490.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., and T. Qu, 2015: Low-frequency variability of the South Pacific Subtropical Gyre as seen from satellite altimetry and Argo. J. Phys. Oceanogr., 45, 30833098, doi:10.1175/JPO-D-15-0026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zilberman, N., D. Roemmich, and S. Gille, 2014: Meridional volume transport in the South Pacific: Mean and SAM-related variability. J. Geophys. Res. Oceans, 119, 26582678, doi:10.1002/2013JC009688.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1498 1136 230
PDF Downloads 379 144 13