Is the Influence of Stability on the Sea Surface Heat Flux Important?

L. Mahrt NorthWest Research Associates, Corvallis, Oregon

Search for other papers by L. Mahrt in
Current site
Google Scholar
PubMed
Close
and
Tihomir Hristov Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland

Search for other papers by Tihomir Hristov in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Observations of the heat flux over the open sea and in the coastal zone are analyzed to reexamine the relation of the heat flux to the air–sea temperature difference and wind speed. The study begins by examining problems with different methods for estimating the air–sea temperature difference. The difference between the air and within-water temperature is found to be most suitable for one dataset, while the difference between the air and the radiometrically measured sea surface temperature must be used for the second dataset. On average, the heat flux is linearly proportional to the product of the air–sea temperature difference and wind speed corresponding to approximately constant transfer coefficient for heat CH. Deviations of the heat flux from this simple relationship were generally weakly related or unrelated to the surface bulk Richardson number Rb, even for the coastal zone site. Similar results are also found for the moisture flux. In contrast to the general success of constant transfer coefficient for heat, CH plotted directly as a function of Rb is systematically related to the square root of Rb. The role of the wind speed as a shared variable between CH and Rb also predicts such a square root dependence, suggesting that the relationship could be largely due to self-correlation, which is also supported by a nominal study of self-correlation. However, confident isolation of the influences of stability, self-correlation, uncertainties in the air–sea temperature difference, and other physics requires more extensive data.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Larry Mahrt, mahrt@nwra.com

Abstract

Observations of the heat flux over the open sea and in the coastal zone are analyzed to reexamine the relation of the heat flux to the air–sea temperature difference and wind speed. The study begins by examining problems with different methods for estimating the air–sea temperature difference. The difference between the air and within-water temperature is found to be most suitable for one dataset, while the difference between the air and the radiometrically measured sea surface temperature must be used for the second dataset. On average, the heat flux is linearly proportional to the product of the air–sea temperature difference and wind speed corresponding to approximately constant transfer coefficient for heat CH. Deviations of the heat flux from this simple relationship were generally weakly related or unrelated to the surface bulk Richardson number Rb, even for the coastal zone site. Similar results are also found for the moisture flux. In contrast to the general success of constant transfer coefficient for heat, CH plotted directly as a function of Rb is systematically related to the square root of Rb. The role of the wind speed as a shared variable between CH and Rb also predicts such a square root dependence, suggesting that the relationship could be largely due to self-correlation, which is also supported by a nominal study of self-correlation. However, confident isolation of the influences of stability, self-correlation, uncertainties in the air–sea temperature difference, and other physics requires more extensive data.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Larry Mahrt, mahrt@nwra.com
Save
  • Anderson, K., and Coauthors, 2004: The RED Experiment: An assessment of boundary layer effects in a trade winds regime on microwave and infrared propagation over the sea. Bull. Amer. Meteor. Soc., 85, 13551365, doi:10.1175/BAMS-85-9-1355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, 2011: Fallacies of the enthalpy transfer coefficient over the ocean in high winds. J. Atmos. Sci., 68, 14351445, doi:10.1175/2011JAS3714.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, L. Mahrt, and D. Vickers, 2012: A new drag relation for aerodynamically rough flow over the ocean. J. Atmos. Sci., 69, 25202537, doi:10.1175/JAS-D-11-0312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanc, T. V., 1985: Variation of bulk-derived surface flux, stability, and roughness results due to the use of different transfer coefficient regimes. J. Phys. Oceanogr., 15, 650669, doi:10.1175/1520-0485(1985)015<0650:VOBDSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunke, M., X. Zeng, and S. Anderson, 2002: Uncertainties in sea surface turbulent flux algorithms and data sets. J. Geophys. Res., 107, 3141, doi:10.1029/2001JC000992.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donlon, C. J., P. J. Minnett, C. Gentemann, T. Nightingale, J. Barton, B. Ward, and M. J. Murray, 2002: Toward improved validation of satellite sea surface skin temperature measurements for climatic research. J. Climate, 15, 353369, doi:10.1175/1520-0442(2002)015<0353:TIVOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dörenkämper, M., M. Optis, A. Monahan, and G. Steinfeld, 2015: On the offshore advection of boundary-layer structures and the influence on offshore wind conditions. Bound.-Layer Meteor., 155, 459482, doi:10.1007/s10546-015-0008-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and Coauthors, 2007: The Coupled Boundary Layers and Air–Sea Transfer experiment in low winds. Bull. Amer. Meteor. Soc., 88, 341356, doi:10.1175/BAMS-88-3-341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. S. Godfrey, G. A. Wick, J. B. Edson, and G. S. Young, 1996: Cool-skin and warm-layer effects on sea surface temperature. J. Geophys. Res., 101, 12951308, doi:10.1029/95JC03190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., and Coauthors, 2006: Turbulent bulk transfer coefficients and ozone deposition velocity in the International Consortium for Atmospheric Research into Transport and Transformation. J. Geophys. Res., 111, D23S20, doi:10.1029/2006JD007597.

    • Search Google Scholar
    • Export Citation
  • Friehe, C., and K. Schmitt, 1976: Parameterization of air–sea interfacial fluxes of sensible heat and moisture by the bulk aerodynamic formulas. J. Phys. Oceanogr., 6, 801809, doi:10.1175/1520-0485(1976)006<0801:POASIF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friehe, C., and Coauthors, 1991: Air–sea fluxes and surface layer turbulence around a sea surface temperature front. J. Geophys. Res., 96, 85938609, doi:10.1029/90JC02062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garratt, J., 1987: The stably stratified internal boundary layer for steady and diurnally varying offshore flow. Bound.-Layer Meteor., 38, 369394, doi:10.1007/BF00120853.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garratt, J., and B. Ryan, 1989: The structure of the stably stratified internal boundary layer in offshore flow over the sea. Bound.-Layer Meteor., 47, 1740, doi:10.1007/BF00122320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Högström, U., A. Rutgersson, E. Sahlée, A.-S. Smedman, T. S. Hristov, W. M. Drennan, and K. K. Kahma, 2013: Air–sea interaction features in the Baltic Sea and at a Pacific trade-wind site: An inter-comparison study. Bound.-Layer Meteor., 147, 139163, doi:10.1007/s10546-012-9776-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalogiros, J., and Q. Wang, 2011: Aircraft observations of sea-surface turbulent fluxes near the California coast. Bound.-Layer Meteor., 139, 283306, doi:10.1007/s10546-010-9585-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katsaros, K., 1980: Radiative sensing of sea surface temperature. Air–Sea Interaction: Instruments and Methods, F. Dobson, L. Hasse, and R. Davis, Eds., Plenum Press, 293–317.

    • Crossref
    • Export Citation
  • Klipp, C., and L. Mahrt, 2004: Flux-gradient relationship, self-correlation and intermittency in the stable boundary layer. Quart. J. Roy. Meteor. Soc., 130, 20872104, doi:10.1256/qj.03.161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larsén, X. G., A. S. Smedman, and U. Högström, 2004: Air–sea exchange of sensible heat over the Baltic Sea. Quart. J. Roy. Meteor. Soc., 130, 519539, doi:10.1256/qj.03.11.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W., K. Katsaros, and J. Businger, 1979: Bulk parameterization of air-sea exchanges of heat and water vapor including molecular constraints at the surface. J. Atmos. Sci., 36, 17221735, doi:10.1175/1520-0469(1979)036<1722:BPOASE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Louis, J.-F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187202, doi:10.1007/BF00117978.

  • Mahrt, L., and C. K. Thomas, 2016: Surface stress with non-stationary weak winds and stable stratification. Bound.-Layer Meteor., 159, 321, doi:10.1007/s10546-015-0111-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., D. Vickers, and E. Moore, 2004: Flow adjustments across sea-surface temperature changes. Bound.-Layer Meteor., 111, 553564, doi:10.1023/B:BOUN.0000016600.63382.5f.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., D. Vickers, E. L Andreas, and D. Khelif, 2012: Sensible heat flux in near-neutral conditions over the sea. J. Phys. Oceanogr., 42, 11341142, doi:10.1175/JPO-D-11-0186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., E. L Andreas, J. B. Edson, D. Vickers, J. Sun, and E. G. Patton, 2016: Coastal zone surface stress with stable stratification. J. Phys. Oceanogr., 46, 95105, doi:10.1175/JPO-D-15-0116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marmorino, G. O., and G. B. Smith, 2005: Bright and dark ocean whitecaps observed in the infrared. Geophys. Res. Lett., 32, L11604, doi:10.1029/2005GL023176.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rieder, K. F., and J. A. Smith, 1998: Removing wave effects from the wind stress vector. J. Geophys. Res., 103, 13631374, doi:10.1029/97JC02571.

  • Rogers, D. P., D. W. Johnson, and C. A. Friehe, 1995: Stable internal boundary layer over a coastal sea. Part I: Airborne measurements of the mean and turbulence structure. J. Atmos. Sci., 52, 667683, doi:10.1175/1520-0469(1995)052<0667:TSIBLO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Small, R., and Coauthors, 2008: Air–sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45, 274319, doi:10.1016/j.dynatmoce.2008.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smedman, A.-S., U. Högström, E. Sahlée, and C. Johansson, 2007: Critical re-evaluation of the bulk transfer coefficient for sensible heat over the ocean during unstable and neutral conditions. Quart. J. Roy. Meteor. Soc., 133, 227250, doi:10.1002/qj.6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., and J. R. French, 2016: Air–sea interactions in light of new understanding of air–land interactions. J. Atmos. Sci., 73, 39313949, doi:10.1175/JAS-D-15-0354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., D. Vandemark, L. Mahrt, D. Vickers, T. Crawford, and C. Vogel, 2001: Momentum transfer over the coastal zone. J. Geophys. Res., 106, 12 43712 488, doi:10.1029/2000JD900696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thum, N., S. Esbensen, D. Chelton, and M. McPhaden, 2002: Air–sea heat exchange along the northern sea surface temperature front in the eastern tropical Pacific. J. Climate, 15, 33613378, doi:10.1175/1520-0442(2002)015<3361:ASHEAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Veron, F., W. K. Melville, and L. Lenain, 2008: Wave-coherent air–sea heat flux. J. Phys. Oceanogr., 38, 788802, doi:10.1175/2007JPO3682.1.

  • Vickers, D., and L. Mahrt, 1999: Observations of nondimensional shear in the coastal zone. Quart. J. Roy. Meteor. Soc., 125, 26852702, doi:10.1002/qj.49712555917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vickers, D., and L. Mahrt, 2006: Evaluation of the air-sea bulk formula and sea-surface temperature variability from observations. J. Geophys. Res., 111, C05002, doi:10.1029/2005JC003323.

    • Search Google Scholar
    • Export Citation
  • Vickers, D., L. Mahrt, J. Sun, and T. Crawford, 2001: Structure of offshore flow. Mon. Wea. Rev., 129, 12511258, doi:10.1175/1520-0493(2001)129<1251:SOOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vickers, D., L. Mahrt, and E. L Andreas, 2015: Formulation of the sea-surface friction velocity in terms of the mean wind and bulk stability. J. Appl. Meteor. Climatol., 54, 691703, doi:10.1175/JAMC-D-14-0099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zappa, C. J., W. E. Asher, A. T. Jessup, J. Klinke, and S. R. Long, 2004: Microbreaking and the enhancement of air-water transfer velocity. J. Geophys. Res., 109, C08S16, doi:10.1029/2003JC001897.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., M. Zhao, and R. Dickinson, 1998: Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J. Climate, 11, 26282644, doi:10.1175/1520-0442(1998)011<2628:IOBAAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 287 66 8
PDF Downloads 303 40 5