Interpreting Fixed-Location Observations of Turbulence Advected by Waves: Insights from Spectral Models

Johanna H. Rosman Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina

Search for other papers by Johanna H. Rosman in
Current site
Google Scholar
PubMed
Close
and
Gregory P. Gerbi Physics and Geosciences Departments, Skidmore College, Sarotoga Springs, New York

Search for other papers by Gregory P. Gerbi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Assigning a physical interpretation to turbulent fluctuations beneath waves is complex because eddies are advected by unsteady wave orbital motion. Here, the kinematic effects of wave orbital motion on turbulent fluctuations at a fixed location were investigated using model turbulence spatial spectra (κ spectra) together with a general form of the frozen turbulence approximation. Model autospectra and cospectra included an inertial subrange, a rolloff at energy-containing scales (L = 2π/κ0), and a dissipation range. Turbulence was advected by a background flow composed of waves (rms orbital velocity σw, peak frequency ωw, and spectral width Δωw) propagating parallel to a current uc. Expressions were derived for turbulence frequency spectra (ω spectra), and parameters were varied across ranges typical in the coastal ocean. Except close to the wave band, the ω-spectrum shape collapses with two dimensionless parameters, a velocity ratio σw/uc, and a time-scale ratio ucκ0/ωw, which can be used to diagnose the effects of wave advection on turbulence spectra. As σw/uc increases, less variance and covariance appear at low frequencies (ω < ucκ0) and more appear at high frequencies (ω > ucκ0). If σw/uc > 2, wave advection must be taken into account when estimating turbulence length scales and integral quantities (e.g., Reynolds stress) from the low-frequency portion of spectra. The offset of the −5/3 region due to waves is unaffected by the rolloff or dissipation range; therefore, previously proposed methods for estimating dissipation rate from wave-affected −5/3 spectra are robust. Although idealized, the results inform the interpretation of turbulence ω spectra beneath waves and guide the estimation of turbulence properties from those spectra.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Johanna Rosman, jrosman@unc.edu

Abstract

Assigning a physical interpretation to turbulent fluctuations beneath waves is complex because eddies are advected by unsteady wave orbital motion. Here, the kinematic effects of wave orbital motion on turbulent fluctuations at a fixed location were investigated using model turbulence spatial spectra (κ spectra) together with a general form of the frozen turbulence approximation. Model autospectra and cospectra included an inertial subrange, a rolloff at energy-containing scales (L = 2π/κ0), and a dissipation range. Turbulence was advected by a background flow composed of waves (rms orbital velocity σw, peak frequency ωw, and spectral width Δωw) propagating parallel to a current uc. Expressions were derived for turbulence frequency spectra (ω spectra), and parameters were varied across ranges typical in the coastal ocean. Except close to the wave band, the ω-spectrum shape collapses with two dimensionless parameters, a velocity ratio σw/uc, and a time-scale ratio ucκ0/ωw, which can be used to diagnose the effects of wave advection on turbulence spectra. As σw/uc increases, less variance and covariance appear at low frequencies (ω < ucκ0) and more appear at high frequencies (ω > ucκ0). If σw/uc > 2, wave advection must be taken into account when estimating turbulence length scales and integral quantities (e.g., Reynolds stress) from the low-frequency portion of spectra. The offset of the −5/3 region due to waves is unaffected by the rolloff or dissipation range; therefore, previously proposed methods for estimating dissipation rate from wave-affected −5/3 spectra are robust. Although idealized, the results inform the interpretation of turbulence ω spectra beneath waves and guide the estimation of turbulence properties from those spectra.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Johanna Rosman, jrosman@unc.edu
Save
  • Benilov, A. Y., and B. N. Filyushkin, 1970: Application of methods of linear filtration to an analysis of fluctuations in the surface layer of the sea. Izv., Atmos. Ocean. Phys., 6, 810819.

    • Search Google Scholar
    • Export Citation
  • Feddersen, F., 2010: Quality controlling surf zone acoustic Doppler velocimeter observations to estimate the turbulent dissipation rate. J. Atmos. Oceanic Technol., 27, 20392055, doi:10.1175/2010JTECHO783.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feddersen, F., 2012: Observations of the surf-zone turbulent dissipation rate. J. Phys. Oceanogr., 42, 386399, doi:10.1175/JPO-D-11-082.1.

  • Feddersen, F., and A. J. Williams III, 2007: Direct estimation of the Reynolds stress vertical structure in the nearshore. J. Atmos. Oceanic Technol., 24, 102116, doi:10.1175/JTECH1953.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feddersen, F., J. H. Trowbridge, and A. J. Williams III, 2007: Vertical structure of dissipation in the nearshore. J. Phys. Oceanogr., 37, 17641777, doi:10.1175/JPO3098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerbi, G. P., J. H. Trowbridge, J. B. Edson, A. J. Plueddemann, E. A. Terray, and J. J. Fredericks, 2008: Measurements of momentum and heat transfer across the air–sea interface. J. Phys. Oceanogr., 38, 10541072, doi:10.1175/2007JPO3739.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerbi, G. P., J. H. Trowbridge, E. A. Terray, A. J. Plueddemann, and T. Kukulka, 2009: Observations of turbulence in the ocean surface boundary layer: Energetics and transport. J. Phys. Oceanogr., 39, 10771096, doi:10.1175/2008JPO4044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geyer, W. R., J. H. Trowbridge, and M. M. Bowen, 2000: The dynamics of a partially mixed estuary. J. Phys. Oceanogr., 30, 20352048, doi:10.1175/1520-0485(2000)030<2035:TDOAPM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, N. L., and S. G. Monismith, 2008: The influence of whitecapping waves on the vertical structure of turbulence in a shallow estuarine embayment. J. Phys. Oceanogr., 38, 15631580, doi:10.1175/2007JPO3766.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., J. C. Wyngaard, Y. Izumi, and O. R. Cote, 1972: Spectral characteristics of surface layer turbulence. Quart. J. Roy. Meteor. Soc., 98, 563589, doi:10.1002/qj.49709841707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirincich, A. R., S. J. Lentz, and G. P. Gerbi, 2010: Calculating Reynolds stresses from ADCP measurements in the presence of surface waves using the cospectra-fit method. J. Atmos. Oceanic Technol., 27, 889907, doi:10.1175/2009JTECHO682.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., R. T. Guza, S. Elgar, F. Feddersen, and T. H. C. Herbers, 1999: Momentum balances on the North Carolina inner shelf. J. Geophys. Res., 104, 18 20518 226, doi:10.1029/1999JC900101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lumley, J. L., and E. A. Terray, 1983: Kinematics of turbulence convected by a random wave field. J. Phys. Oceanogr., 13, 20002007, doi:10.1175/1520-0485(1983)013<2000:KOTCBA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pope, S. B., 2000: Turbulent Flows. Cambridge University Press, 771 pp.

    • Crossref
    • Export Citation
  • Rosman, J. H., J. L. Hench, J. R. Koseff, and S. G. Monismith, 2008: Extracting Reynolds stresses from acoustic Doppler current profiler measurements in wave-dominated environments. J. Atmos. Oceanic Technol., 25, 286306, doi:10.1175/2007JTECHO525.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, W. J., and J. H. Trowbridge, 2001: The direct estimation of near-bottom turbulent fluxes in the presence of energetic wave motions. J. Atmos. Oceanic Technol., 18, 15401557, doi:10.1175/1520-0426(2001)018<1540:TDEONB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1938: The spectrum of turbulence. Proc. Roy. Soc. London, A164, 476490, doi:10.1098/rspa.1938.0032.

  • Trowbridge, J. H., and S. Elgar, 2001: Turbulence measurements in the surf zone. J. Phys. Oceanogr., 31, 24032417, doi:10.1175/1520-0485(2001)031<2403:TMITSZ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trowbridge, J. H., and S. Elgar, 2003: Spatial scales of stress-carrying nearshore turbulence. J. Phys. Oceanogr., 33, 11221128, doi:10.1175/1520-0485(2003)033<1122:SSOSNT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., and S. F. Clifford, 1977: Taylor’s hypothesis and high-frequency turbulence spectra. J. Atmos. Sci., 34, 922929, doi:10.1175/1520-0469(1977)034<0922:THAHTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 446 221 11
PDF Downloads 263 85 4