Surface Cooling, Winds, and Eddies over the Continental Shelf

K. H. Brink Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by K. H. Brink in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Models show that surface cooling over a sloping continental shelf should give rise to baroclinic instability and thus tend toward gravitationally stable density stratification. Less is known about how alongshore winds affect this process, so the role of surface momentum input is treated here by means of a sequence of idealized, primitive equation numerical model calculations. The effects of cooling rate, wind amplitude and direction, bottom slope, bottom friction, and rotation rate are all considered. All model runs lead to instability and an eddy field. While instability is not strongly affected by upwelling-favorable alongshore winds, wind-driven downwelling substantially reduces eddy kinetic energy, largely because the downwelling circulation plays a similar role to baroclinic instability by flattening isotherms and so reducing available potential energy. Not surprisingly, cross-shelf winds appear to have little effect. Analysis of the model runs leads to quantitative relations for the wind effect on eddy kinetic energy for the equilibrium density stratification (which increases as the cooling rate increases) and for eddy length scale.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: kbrink@whoi.edu

Abstract

Models show that surface cooling over a sloping continental shelf should give rise to baroclinic instability and thus tend toward gravitationally stable density stratification. Less is known about how alongshore winds affect this process, so the role of surface momentum input is treated here by means of a sequence of idealized, primitive equation numerical model calculations. The effects of cooling rate, wind amplitude and direction, bottom slope, bottom friction, and rotation rate are all considered. All model runs lead to instability and an eddy field. While instability is not strongly affected by upwelling-favorable alongshore winds, wind-driven downwelling substantially reduces eddy kinetic energy, largely because the downwelling circulation plays a similar role to baroclinic instability by flattening isotherms and so reducing available potential energy. Not surprisingly, cross-shelf winds appear to have little effect. Analysis of the model runs leads to quantitative relations for the wind effect on eddy kinetic energy for the equilibrium density stratification (which increases as the cooling rate increases) and for eddy length scale.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: kbrink@whoi.edu
Save
  • Allen, J. S., 1984: A simple model for stratified shelf flow fields with bottom friction. J. Phys. Oceanogr., 14, 12001214, doi:10.1175/1520-0485(1984)014<1200:ASMFSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., and G. R. Flierl, 2004: Baroclinically unstable geostrophic turbulence in the limits of strong and weak bottom Ekman friction: Application to midocean eddies. J. Phys. Oceanogr., 34, 22572273, doi:10.1175/1520-0485(2004)034<2257:BUGTIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barth, J. A., 1994: Short-wavelength instabilities on coastal jets and fronts. J. Geophys. Res., 99, 16 09516 115, doi:10.1029/94JC01270.

  • Brink, K. H., 2013: Instability of a tidal mixing front in the presence of realistic tides and mixing. J. Mar. Res., 71, 227252, doi:10.1357/002224013807719473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brink, K. H., 2016: Continental shelf baroclinic instability. Part I: Relaxation from upwelling or downwelling. J. Phys. Oceanogr., 46, 551568, doi:10.1175/JPO-D-15-0047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brink, K. H., and H. Seo, 2016: Continental shelf baroclinic instability. Part II: Oscillating wind forcing. J. Phys. Oceanogr., 46, 569582, doi:10.1175/JPO-D-15-0048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, D. C., and G. Gawarkiewicz, 1997: Shallow convection and buoyancy equilibration in an idealized coastal polynya. J. Phys. Oceanogr., 27, 555566, doi:10.1175/1520-0485(1997)027<0555:SCABEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durski, S. M., and J. S. Allen, 2005: Finite-amplitude evolution of instabilities associated with the coastal upwelling front. J. Phys. Oceanogr., 35, 16061628, doi:10.1175/JPO2762.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haidvogel, D. B., H. G. Arango, K. Hedstrom, A. Beckmann, P. Malanotte-Rizzoli, and A. F. Shchepetkin, 2000: Model evaluation experiments in the North Atlantic basin: Simulations in nonlinear terrain-following coordinates. Dyn. Atmos. Oceans, 32, 239281, doi:10.1016/S0377-0265(00)00049-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1965a: The influence of viscous boundary layers on transient motions in a stratified rotating fluid: Part I. J. Atmos. Sci., 22, 402411, doi:10.1175/1520-0469(1965)022<0402:TIOVBL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1965b: The influence of viscous boundary layers on transient motions in a stratified rotating fluid: Part II. J. Atmos. Sci., 22, 535540, doi:10.1175/1520-0469(1965)022<0535:TIOVBL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kundu, P. K., and J. S. Allen, 1976: Some three-dimensional characteristics of low-frequency current fluctuations near the Oregon coast. J. Phys. Oceanogr., 6, 181199, doi:10.1175/1520-0485(1976)006<0181:STDCOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., and M. R. Fewings, 2012: The wind-and wave-driven inner-shelf circulation. Annu. Rev. Mar. Sci., 4, 317343, doi:10.1146/annurev-marine-120709-142745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pringle, J. M., 2001: Cross-shelf eddy heat transport in a wind-free coastal ocean undergoing winter time cooling. J. Geophys. Res., 106, 25892604, doi:10.1029/2000JC900148.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shearman, R. K., and K. H. Brink, 2010: Evaporative dense water formation and cross-shelf exchange over the northwest Australian inner shelf. J. Geophys. Res., 115, C06027, doi:10.1029/2009JC005931.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2005: Buoyancy-forced circulations in shallow marginal seas. J. Mar. Res., 63, 729775, doi:10.1357/0022240054663204.

  • Spall, M. A., 2013: Dense water formation around islands. J. Geophys. Res. Oceans, 118, 25072519, doi:10.1002/jgrc.20185.

  • Spall, M. A., and D. C. Chapman, 1998: On the efficiency of baroclinic eddy heat transport across narrow fronts. J. Phys. Oceanogr., 28, 22752287, doi:10.1175/1520-0485(1998)028<2275:OTEOBE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., and A. F. Thompson, 2015: Eddy-mediated transport of warm Circumpolar Deep Water across the Antarctic shelf break. Geophys. Res. Lett., 42, 432440, doi:10.1002/2014GL062281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitehead, J. A., 1981: Laboratory models of circulation in shallow seas. Philos. Trans. Roy. Soc. London, A302, 583595, doi:10.1098/rsta.1981.0184.

    • Search Google Scholar
    • Export Citation
  • Wijesekera, H. W., J. S. Allen, and P. Newberger, 2003: A modeling study of turbulent mixing over the continental shelf: Comparison of turbulent closure schemes. J. Geophys. Res., 108, 3103, doi:10.1029/2001JC001234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winters, K. R., P. N. Lombard, J. J. Riley, and E. A. D’Asaro, 1995: Available potential energy and mixing in density-stratified fluids. J. Fluid Mech., 289, 115128, doi:10.1017/S002211209500125X.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 267 111 7
PDF Downloads 724 52 3