Turbulent Upper-Ocean Mixing Affected by Meltwater Layers during Arctic Summer

Achim Randelhoff Institute for Arctic and Marine Biology, University of Tromsø, The Arctic University of Norway, and Norwegian Polar Institute, Tromsø, Norway

Search for other papers by Achim Randelhoff in
Current site
Google Scholar
PubMed
Close
,
Ilker Fer Geophysical Institute, University of Bergen, and Bjerknes Centre for Climate Research, Bergen, Norway

Search for other papers by Ilker Fer in
Current site
Google Scholar
PubMed
Close
, and
Arild Sundfjord Norwegian Polar Institute, Tromsø, Norway

Search for other papers by Arild Sundfjord in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Every summer, intense sea ice melt around the margins of the Arctic pack ice leads to a stratified surface layer, potentially without a traditional surface mixed layer. The associated strengthening of near-surface stratification has important consequences for the redistribution of near-inertial energy, ice–ocean heat fluxes, and vertical replenishment of nutrients required for biological growth. The authors describe the vertical structure of meltwater layers and quantify their seasonal evolution and their effect on turbulent mixing in the oceanic boundary layer by analyzing more than 450 vertical profiles of velocity microstructure in the seasonal ice zone north of Svalbard. The vertical structure of the density profiles can be summarized by an equivalent mixed layer depth hBD, which scales with the depth of the seasonal stratification. As the season progresses and melt rates increase, hBD shoals following a robust pattern, implying stronger vertical stratification, weaker vertical eddy diffusivity, and reduced vertical extent of the mixing layer, which is bounded by hBD. Through most of the seasonal pycnocline, the vertical eddy diffusivity scales inversely with buoyancy frequency (KρN−1). The presence of mobile sea ice alters the magnitude and vertical structure of turbulent mixing primarily through stronger and shallower stratification, and thus vertical eddy diffusivity is greatly reduced under sea ice. This study uses these results to develop a quantitative model of surface layer turbulent mixing during Arctic summer and discuss the impacts of a changing sea ice cover.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Achim Randelhoff, achim@npolar.no

Abstract

Every summer, intense sea ice melt around the margins of the Arctic pack ice leads to a stratified surface layer, potentially without a traditional surface mixed layer. The associated strengthening of near-surface stratification has important consequences for the redistribution of near-inertial energy, ice–ocean heat fluxes, and vertical replenishment of nutrients required for biological growth. The authors describe the vertical structure of meltwater layers and quantify their seasonal evolution and their effect on turbulent mixing in the oceanic boundary layer by analyzing more than 450 vertical profiles of velocity microstructure in the seasonal ice zone north of Svalbard. The vertical structure of the density profiles can be summarized by an equivalent mixed layer depth hBD, which scales with the depth of the seasonal stratification. As the season progresses and melt rates increase, hBD shoals following a robust pattern, implying stronger vertical stratification, weaker vertical eddy diffusivity, and reduced vertical extent of the mixing layer, which is bounded by hBD. Through most of the seasonal pycnocline, the vertical eddy diffusivity scales inversely with buoyancy frequency (KρN−1). The presence of mobile sea ice alters the magnitude and vertical structure of turbulent mixing primarily through stronger and shallower stratification, and thus vertical eddy diffusivity is greatly reduced under sea ice. This study uses these results to develop a quantitative model of surface layer turbulent mixing during Arctic summer and discuss the impacts of a changing sea ice cover.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Achim Randelhoff, achim@npolar.no
Save
  • Anderson, R. J., 1987: Wind stress measurements over rough ice during the 1984 Marginal Ice Zone Experiment. J. Geophys. Res., 92, 69336941, doi:10.1029/JC092iC07p06933.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ardyna, M., M. Babin, M. Gosselin, E. Devred, L. Rainville, and J.-E. Tremblay, 2014: Recent Arctic Ocean sea ice loss triggers novel fall phytoplankton blooms. Geophys. Res. Lett., 41, 62076212, doi:10.1002/2014GL061047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brainerd, K. E., and M. C. Gregg, 1995: Surface mixed and mixing layer depths. Deep-Sea Res. I, 42, 15211543, doi:10.1016/0967-0637(95)00068-H.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., and J. H. Morison, 1992: Internal waves and mixing in the Arctic Ocean. Deep-Sea Res., 39A, S459S484, doi:10.1016/S0198-0149(06)80016-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Denman, K. L., and M. Miyake, 1973: Upper layer modification at Ocean Station Papa: Observations and simulation. J. Phys. Oceanogr., 3, 185196, doi:10.1175/1520-0485(1973)003<0185:ULMAOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dewey, R. K., and J. N. Moum, 1990: Enhancement of fronts by vertical mixing. J. Geophys. Res., 95, 94339445, doi:10.1029/JC095iC06p09433.

  • Fer, I., 2006: Scaling turbulent dissipation in an Arctic fjord. Deep-Sea Res. II, 53, 7795, doi:10.1016/j.dsr2.2006.01.003.

  • Fer, I., 2014: Near-inertial mixing in the central Arctic Ocean. J. Phys. Oceanogr., 44, 20312049, doi:10.1175/JPO-D-13-0133.1.

  • Fer, I., R. Skogseth, and F. Geyer, 2010: Internal waves and mixing in the Marginal Ice Zone near the Yermak Plateau. J. Phys. Oceanogr., 40, 16131630, doi:10.1175/2010JPO4371.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., and G. Holloway, 1984: Dissipation and diffusion by internal wave breaking. J. Mar. Res., 42, 1527, doi:10.1357/002224084788506158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Granskog, M. A., A. K. Pavlov, S. Sagan, P. Kowalczuk, A. Raczkowska, and C. A. Stedmon, 2015: Effect of sea-ice melt on inherent optical properties and vertical distribution of solar radiant heating in Arctic surface waters. J. Geophys. Res. Oceans, 120, 70287039, doi:10.1002/2015JC011087.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Granskog, M. A., P. Assmy, S. Gerland, G. Spreen, H. Steen, and L. Smedsrud, 2016: Arctic research on thin ice: Consequences of Arctic sea ice loss. Eos, Trans. Amer. Geophys. Union, 97, doi:10.1029/2016EO044097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guest, P. S., and K. L. Davidson, 1987: The effect of observed ice conditions on the drag coefficient in the summer east Greenland Sea marginal ice zone. J. Geophys. Res. Oceans, 92, 69436954, doi:10.1029/JC092iC07p06943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haine, T. W., and Coauthors, 2015: Arctic freshwater export: Status, mechanisms, and prospects. Global Planet. Change, 125, 1335, doi:10.1016/j.gloplacha.2014.11.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hudson, S. R., M. A. Granskog, A. Sundfjord, A. Randelhoff, A. H. H. Renner, and D. V. Divine, 2013: Energy budget of first-year Arctic sea ice in advanced stages of melt. Geophys. Res. Lett., 40, 26792683, doi:10.1002/grl.50517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huisman, J., P. van Oostveen, and F. J. Weissing, 1999: Critical depth and critical turbulence: Two different mechanisms for the development of phytoplankton blooms. Limnol. Oceanogr., 44, 17811787, doi:10.4319/lo.1999.44.7.1781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Itkin, P., and Coauthors, 2015: N-ICE2015 buoy data. Norwegian Polar Institute, accessed 21 Nov 2016, doi:10.21334/npolar.2015.6ed9a8ca.

    • Crossref
    • Export Citation
  • Krishfield, R., J. Toole, A. Proshutinsky, and M.-L. Timmermans, 2008: Automated ice-tethered profilers for seawater observations under pack ice in all seasons. J. Atmos. Oceanic Technol., 25, 20912105, doi:10.1175/2008JTECHO587.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levine, M. D., C. A. Paulson, and J. H. Morison, 1985: Internal waves in the Arctic Ocean: Comparison with lower-latitude observations. J. Phys. Oceanogr., 15, 800809, doi:10.1175/1520-0485(1985)015<0800:IWITAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, W. K. W., F. A. McLaughlin, C. Lovejoy, and E. C. Carmack, 2009: Smallest algae thrive as the Arctic Ocean freshens. Science, 326, 539, doi:10.1126/science.1179798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lincoln, B. J., T. P. Rippeth, Y.-D. Lenn, M. L. Timmermans, W. J. Williams, and S. Bacon, 2016: Wind-driven mixing at intermediate depths in an ice-free Arctic Ocean. Geophys. Res. Lett., 43, 97499756, doi:10.1002/2016GL070454.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, T., M. Steele, and J. Zhang, 2014: Seasonality and long-term trend of Arctic Ocean surface stress in a model. J. Geophys. Res. Oceans, 119, 17231738, doi:10.1002/2013JC009425.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhee, M. G., and L. H. Kantha, 1989: Generation of internal waves by sea ice. J. Geophys. Res., 94, 32873302, doi:10.1029/JC094iC03p03287.

  • McPhee, M. G., G. A. Maykut, and J. H. Morison, 1987: Dynamics and thermodynamics of the ice/upper ocean system in the marginal ice zone of the Greenland Sea. J. Geophys. Res., 92, 70177031, doi:10.1029/JC092iC07p07017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhee, M. G., T. P. Stanton, J. H. Morison, and D. G. Martinson, 1998: Freshening of the upper ocean in the Arctic: Is perennial sea ice disappearing? Geophys. Res. Lett., 25, 17291732, doi:10.1029/98GL00933.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morison, J., C. E. Long, and M. D. Levine, 1985: Internal wave dissipation under sea ice. J. Geophys. Res., 90, 11 95911 966, doi:10.1029/JC090iC06p11959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morison, J., R. Kwok, C. Peralta-Ferriz, M. Alkire, I. Rigor, R. Andersen, and M. Steele, 2012: Changing Arctic Ocean freshwater pathways. Nature, 481, 6670, doi:10.1038/nature10705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J. N., 1996: Energy-containing scales of turbulence in the ocean thermocline. J. Geophys. Res., 101, 14 09514 109, doi:10.1029/96JC00507.

  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 8389, doi:10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peralta-Ferriz, C., and R. A. Woodgate, 2015: Seasonal and interannual variability of pan-Arctic surface mixed layer properties from 1979 to 2012 from hydrographic data, and the dominance of stratification for multiyear mixed layer depth shoaling. Prog. Oceanogr., 134, 1953, doi:10.1016/j.pocean.2014.12.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, A. K., I. Fer, M. G. McPhee, and A. Randelhoff, 2017: Turbulent heat and momentum fluxes in the upper ocean under Arctic sea ice. J. Geophys. Res. Oceans, 122, 14391456, doi:10.1002/2016JC012283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Proshutinsky, A., and Coauthors, 2009: Beaufort Gyre freshwater reservoir: State and variability from observations. J. Geophys. Res., 114, C00A10, doi:10.1029/2008JC005104.

    • Search Google Scholar
    • Export Citation
  • Randelhoff, A., A. Sundfjord, and A. H. H. Renner, 2014: Effects of a shallow pycnocline and surface meltwater on sea ice–ocean drag and turbulent heat flux. J. Phys. Oceanogr., 44, 21762190, doi:10.1175/JPO-D-13-0231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randelhoff, A., I. Fer, A. Sundfjord, J.-E. Tremblay, and M. Reigstad, 2016: Vertical fluxes of nitrate in the seasonal nitracline of the Atlantic sector of the Arctic Ocean. J. Geophys. Res. Oceans, 121, 52825295, doi:10.1002/2016JC011779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudels, B., 2016: Arctic Ocean stability: The effects of local cooling, oceanic heat transport, freshwater input, and sea ice melt with special emphasis on the Nansen Basin. J. Geophys. Res. Oceans, 121, 44504473, doi:10.1002/2015JC011045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudels, B., E. P. Jones, U. Schauer, and P. Eriksson, 2004: Atlantic sources of the Arctic Ocean surface and halocline waters. Polar Res., 23, 181208, doi:10.3402/polar.v23i2.6278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spreen, G., L. Kaleschke, and G. Heygster, 2008: Sea ice remote sensing using AMSR-E 89-GHz channels. J. Geophys. Res., 113, C02S03, doi:10.1029/2005JC003384.

    • Search Google Scholar
    • Export Citation
  • Stein, R., and R. W. MacDonald, Eds., 2004: The Organic Carbon Cycle in the Arctic Ocean. Springer-Verlag, 363 pp.

    • Crossref
    • Export Citation
  • Stroeve, J. C., M. C. Serreze, M. M. Holland, J. E. Kay, J. Malanik, and A. P. Barrett, 2012: The Arctic’s rapidly shrinking sea ice cover: A research synthesis. Climatic Change, 110, 10051027, doi:10.1007/s10584-011-0101-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sundfjord, A., I. Fer, Y. Kasajima, and H. Svendsen, 2007: Observations of turbulent mixing and hydrography in the marginal ice zone of the Barents Sea. J. Geophys. Res. Oceans, 112, C05008, doi:10.1029/2006JC003524.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermans, M.-L., and P. Winsor, 2013: Scales of horizontal density structure in the Chukchi Sea surface layer. Cont. Shelf Res., 52, 3945, doi:10.1016/j.csr.2012.10.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermans, M.-L., A. Proshutinsky, R. A. Krishfield, D. K. Perovich, J. A. Richter-Menge, T. P. Stanton, and J. M. Toole, 2011: Surface freshening in the Arctic Oceans Eurasian Basin: An apparent consequence of recent change in the wind-driven circulation. J. Geophys. Res., 116, C00D03, doi:10.1029/2011JC006975.

    • Search Google Scholar
    • Export Citation
  • Timmermans, M.-L., S. Cole, and J. Toole, 2012: Horizontal density structure and restratification of the Arctic Ocean surface layer. J. Phys. Oceanogr., 42, 659668, doi:10.1175/JPO-D-11-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toole, J., R. Krishfield, M.-L. Timmermans, and A. Proshutinsky, 2011: The ice-tethered profiler: Argo of the Arctic. Oceanography, 24, 126135, doi:10.5670/oceanog.2011.64.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamazaki, H., and T. Osborn, 1990: Dissipation estimates for stratified turbulence. J. Geophys. Res., 95, 97399744, doi:10.1029/JC095iC06p09739.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 711 289 15
PDF Downloads 510 153 11