Lateral Eddy Mixing in the Subtropical Salinity Maxima of the Global Ocean

Julius Busecke Division of Ocean and Climate Physics, Lamont-Doherty Earth Observatory, Palisades, New York

Search for other papers by Julius Busecke in
Current site
Google Scholar
PubMed
Close
,
Ryan P. Abernathey Division of Ocean and Climate Physics, Lamont-Doherty Earth Observatory, Palisades, New York

Search for other papers by Ryan P. Abernathey in
Current site
Google Scholar
PubMed
Close
, and
Arnold L. Gordon Division of Ocean and Climate Physics, Lamont-Doherty Earth Observatory, Palisades, New York

Search for other papers by Arnold L. Gordon in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A suite of observationally driven model experiments is used to investigate the contribution of near-surface lateral eddy mixing to the subtropical surface salinity maxima in the global ocean. Surface fields of salinity are treated as a passive tracer and stirred by surface velocities derived from altimetry, leading to irreversible water-mass transformation. In the absence of surface forcing and vertical processes, the transformation rate can be directly related to the integrated diffusion across tracer contours, which is determined by the observed velocities. The destruction rates of the salinity maxima by lateral mixing can be compared to the production rates by surface forcing, which act to strengthen the maxima. The ratio of destruction by eddy mixing in the surface layer versus the surface forcing exhibits regional differences in the mean—from 10% in the South Pacific to up to 25% in the south Indian. Furthermore, the regional basins show seasonal and interannual variability in eddy mixing. The dominant mechanism for this temporal variability varies regionally. Most notably, the North Pacific shows a large sensitivity to the background salinity fields and a weak sensitivity to the velocity fields, while the North Atlantic exhibits the opposite behavior. The different mechanism for temporal variability could have impacts on the manifestation of a changing hydrological cycle in the sea surface salinity (SSS) field specifically in the North Pacific. The authors find evidence for large-scale interannual changes of eddy diffusivity and transformation rate in several ocean basins that could be related to large-scale climate forcing.

Denotes content that is immediately available upon publication as open access.

Lamont-Doherty Earth Observatory Contribution Number 8087.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author address: Julius Busecke, julius@ldeo.columbia.edu

Abstract

A suite of observationally driven model experiments is used to investigate the contribution of near-surface lateral eddy mixing to the subtropical surface salinity maxima in the global ocean. Surface fields of salinity are treated as a passive tracer and stirred by surface velocities derived from altimetry, leading to irreversible water-mass transformation. In the absence of surface forcing and vertical processes, the transformation rate can be directly related to the integrated diffusion across tracer contours, which is determined by the observed velocities. The destruction rates of the salinity maxima by lateral mixing can be compared to the production rates by surface forcing, which act to strengthen the maxima. The ratio of destruction by eddy mixing in the surface layer versus the surface forcing exhibits regional differences in the mean—from 10% in the South Pacific to up to 25% in the south Indian. Furthermore, the regional basins show seasonal and interannual variability in eddy mixing. The dominant mechanism for this temporal variability varies regionally. Most notably, the North Pacific shows a large sensitivity to the background salinity fields and a weak sensitivity to the velocity fields, while the North Atlantic exhibits the opposite behavior. The different mechanism for temporal variability could have impacts on the manifestation of a changing hydrological cycle in the sea surface salinity (SSS) field specifically in the North Pacific. The authors find evidence for large-scale interannual changes of eddy diffusivity and transformation rate in several ocean basins that could be related to large-scale climate forcing.

Denotes content that is immediately available upon publication as open access.

Lamont-Doherty Earth Observatory Contribution Number 8087.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author address: Julius Busecke, julius@ldeo.columbia.edu
Save
  • Abernathey, R. P., and J. Marshall, 2013: Global surface eddy diffusivities derived from satellite altimetry. J. Geophys. Res. Oceans, 118, 901916, doi:10.1002/jgrc.20066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abernathey, R. P., J. Marshall, M. Mazloff, and E. Shuckburgh, 2010: Enhancement of mesoscale eddy stirring at steering levels in the Southern Ocean. J. Phys. Oceanogr., 40, 170184, doi:10.1175/2009JPO4201.1.

    • Search Google Scholar
    • Export Citation
  • Amores, A., O. Melnichenko, and N. Maximenko, 2016: Coherent mesoscale eddies in the North Atlantic subtropical gyre: 3-D structure and transport with application to the salinity maximum. J. Geophys. Res. Oceans, 122, 2341, doi:10.1002/2016JC012256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bingham, F. M., J. Busecke, A. L. Gordon, C. F. Giulivi, and Z. Li, 2014: The North Atlantic subtropical surface salinity maximum as observed by Aquarius. J. Geophys. Res. Oceans, 119, 77417755, doi:10.1002/2014JC009825.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., R. Ferrari, A. Adcroft, D. Ferreira, and J. Marshall, 2005: The vertical structure of ocean heat transport. Geophys. Res. Lett., 32, L10603, doi:10.1029/2005GL022474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, F., and S. Bachman, 2014: Isohaline salinity budget of the North Atlantic salinity maximum. J. Phys. Oceanogr., 45, 724736, doi:10.1175/JPO-D-14-0172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Busecke, J., A. L. Gordon, Z. Li, F. M. Bingham, and J. Font, 2014: Subtropical surface layer salinity budget and the role of mesoscale turbulence. J. Geophys. Res. Oceans, 119, 41244140, doi:10.1002/2013JC009715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., R. A. DeSzoeke, M. G. Schlax, K. El Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460, doi:10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durack, P. J., 2015: Ocean salinity and the global water cycle. Oceanography, 28, 2031, doi:10.5670/oceanog.2015.03.

  • Durack, P. J., and S. E. Wijffels, 2010: Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J. Climate, 23, 43424362, doi:10.1175/2010JCLI3377.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrar, J. T., and Coauthors, 2015: Salinity and temperature balances at the SPURS central mooring during fall and winter. Oceanography, 28, 5665, doi:10.5670/oceanog.2015.06.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forget, G., J. M. Campin, P. Heimbach, C. N. Hill, and R. M. Ponte, 2015: ECCO version 4: An integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci. Model Dev. Discuss., 8, 36533743, doi:10.5194/gmdd-8-3653-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., R. Lumpkin, and F. O. Bryan, 2013: Lateral transport in the ocean interior. Ocean Circulation and Climate: A 21st Century Perspective, G. Siedler et al., Eds., International Geophysics Series, Vol. 103, Academic Press, 185–209.

    • Crossref
    • Export Citation
  • Gordon, A. L., 2016: The marine hydrological cycle: The ocean’s floods and droughts. Geophys. Res. Lett., 43, 76497652, doi:10.1002/2016GL070279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., and C. Giulivi, 2008: Sea surface salinity trends over fifty years within the subtropical North Atlantic. Oceanography, 21, 2029, doi:10.5670/oceanog.2008.64.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., and C. Giulivi, 2014: Ocean eddy freshwater flux convergence into the North Atlantic subtropics. J. Geophys. Res. Oceans, 119, 33273335, doi:10.1002/2013JC009596.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., C. Giulivi, J. Busecke, and F. M. Bingham, 2015: Differences among subtropical surface salinity patterns. Oceanography, 28, 3239, doi:10.5670/oceanog.2015.02.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groeskamp, S., B. M. Sloyan, J. D. Zika, and T. J. McDougall, 2017: Mixing inferred from an ocean climatology and surface fluxes. J. Phys. Oceanogr., doi:10.1175/JPO-D-16-0125.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset. Bull. Amer. Meteor. Soc., 78, 520, doi:10.1175/1520-0477(1997)078<0005:TGPCPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, B. K., F. O. Bryan, S. A. Grodsky, and J. A. Carton, 2016: Climatological annual cycle of the salinity budgets of the subtropical maxima. J. Phys. Oceanogr., 46, 29812994, doi:10.1175/JPO-D-15-0202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klocker, A., and R. Abernathey, 2014: Global patterns of mesoscale eddy properties and diffusivities. J. Phys. Oceanogr., 44, 10301046, doi:10.1175/JPO-D-13-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, M.-M., A. J. G. Nurser, A. C. Coward, and B. A. De Cuevas, 2009: Effective eddy diffusivities inferred from a point release tracer in an eddy-resolving ocean model. J. Phys. Oceanogr., 39, 894914, doi:10.1175/2008JPO3902.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindstrom, E., F. Bryan, and R. Schmitt, 2015: SPURS: Salinity Processes in the Upper-Ocean Regional Study—The North Atlantic Experiment. Oceanography, 28, 1419, doi:10.5670/oceanog.2015.01.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, doi:10.1029/96JC02775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., D. Jamous, and J. Nilsson, 1999: Reconciling thermodynamic and dynamic methods of computation of water-mass transformation rates. Deep-Sea Res. I, 46, 545572, doi:10.1016/S0967-0637(98)00082-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., E. Shuckburgh, H. Jones, and C. Hill, 2006: Estimates and implications of surface eddy diffusivity in the Southern Ocean derived from tracer transport. J. Phys. Oceanogr., 36, 18061821, doi:10.1175/JPO2949.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, N., 1996: Two-dimensional mixing, edge formation, and permeability diagnosed in an area coordinate. J. Atmos. Sci., 53, 15241537, doi:10.1175/1520-0469(1996)053<1524:TDMEFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Connor, B. M., R. A. Fine, and D. B. Olson, 2005: A global comparison of subtropical underwater formation rates. Deep-Sea Res. I, 52, 15691590, doi:10.1016/j.dsr.2005.01.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ponte, R. M., and N. T. Vinogradova, 2016: An assessment of basic processes controlling mean surface salinity over the global ocean. Geophys. Res. Lett., 43, 70527058, doi:10.1002/2016GL069857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, T., S. Gao, and I. Fukumori, 2011: What governs the North Atlantic salinity maximum in a global GCM? Geophys. Res. Lett., 38, L07602, doi:10.1029/2011GL046757.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rypina, I. I., I. Kamenkovich, P. S. Berloff, and L. J. Pratt, 2012: Eddy-induced particle dispersion in the near-surface North Atlantic. J. Phys. Oceanogr., 42, 22062228, doi:10.1175/JPO-D-11-0191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schanze, J. J., R. W. Schmitt, and L. L. Yu, 2010: The global oceanic freshwater cycle: A state-of-the-art quantification. J. Mar. Res., 68, 569595, doi:10.1357/002224010794657164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidtko, S., G. C. Johnson, and J. M. Lyman, 2013: MIMOC: A global monthly isopycnal upper-ocean climatology with mixed layers. J. Geophys. Res. Oceans, 118, 16581672, doi:10.1002/jgrc.20122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmitt, R. W., 2008: Salinity and the global water cycle. Oceanography, 21, 1219, doi:10.5670/oceanog.2008.63.

  • Schmitt, R. W., and A. Blair, 2015: A river of salt. Oceanography, 28, 4045, doi:10.5670/oceanog.2015.04.

  • Schott, F. A., J. P. Mccreary, and G. C. Johnson, 2004: Shallow overturning circulations of the tropical-subtropical oceans. Earth’s Climate, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 261–304.

    • Crossref
    • Export Citation
  • Vinogradova, N. T., and R. M. Ponte, 2013: Clarifying the link between surface salinity and freshwater fluxes on monthly to interannual time scales. J. Geophys. Res. Oceans, 118, 31903201, doi:10.1002/jgrc.20200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walin, G., 1977: A theoretical framework for the description of estuaries. Tellus, 29, 128136, doi:10.3402/tellusa.v29i2.11337.

  • Wüst, G., 1936: Oberflächensalzgehalt, verdunstung und niederschlag auf dem weltmeere nebst bemerkungen zum wasserhaushalt der Erde. Länderkd. Forsch., 1936, 347359.

    • Search Google Scholar
    • Export Citation
  • Yu, L., X. Jin, and R. A. Weller, 2008: Multidecade global flux datasets from the Objectively Analyzed Air-Sea Fluxes (OAFlux) project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. OAFlux Project Tech. Rep. OA-2008-01, 64 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 413 95 11
PDF Downloads 187 27 3