Glacial Meltwater Identification in the Amundsen Sea

Louise C. Biddle Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom

Search for other papers by Louise C. Biddle in
Current site
Google Scholar
PubMed
Close
,
Karen J. Heywood Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom

Search for other papers by Karen J. Heywood in
Current site
Google Scholar
PubMed
Close
,
Jan Kaiser Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom

Search for other papers by Jan Kaiser in
Current site
Google Scholar
PubMed
Close
, and
Adrian Jenkins British Antarctic Survey, Cambridge, United Kingdom

Search for other papers by Adrian Jenkins in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Pine Island Ice Shelf, in the Amundsen Sea, is losing mass because of warm ocean waters melting the ice from below. Tracing meltwater pathways from ice shelves is important for identifying the regions most affected by the increased input of this water type. Here, optimum multiparameter analysis is used to deduce glacial meltwater fractions from water mass characteristics (temperature, salinity, and dissolved oxygen concentrations), collected during a ship-based campaign in the eastern Amundsen Sea in February–March 2014. Using a one-dimensional ocean model, processes such as variability in the characteristics of the source water masses on shelf and biological productivity/respiration are shown to affect the calculated apparent meltwater fractions. These processes can result in a false meltwater signature, creating misleading apparent glacial meltwater pathways. An alternative glacial meltwater calculation is suggested, using a pseudo–Circumpolar Deep Water endpoint and using an artificial increase in uncertainty of the dissolved oxygen measurements. The pseudo–Circumpolar Deep Water characteristics are affected by the under ice shelf bathymetry. The glacial meltwater fractions reveal a pathway for 2014 meltwater leading to the west of Pine Island Ice Shelf, along the coastline.

Denotes content that is immediately available upon publication as open access.

This article is licensed under a Creative Commons Attribution 4.0 license (http://creativecommons.org/licenses/by/4.0/).

© 2017 American Meteorological Society.

Corresponding author e-mail: Louise C. Biddle, louise.biddle@uea.ac.uk

Abstract

Pine Island Ice Shelf, in the Amundsen Sea, is losing mass because of warm ocean waters melting the ice from below. Tracing meltwater pathways from ice shelves is important for identifying the regions most affected by the increased input of this water type. Here, optimum multiparameter analysis is used to deduce glacial meltwater fractions from water mass characteristics (temperature, salinity, and dissolved oxygen concentrations), collected during a ship-based campaign in the eastern Amundsen Sea in February–March 2014. Using a one-dimensional ocean model, processes such as variability in the characteristics of the source water masses on shelf and biological productivity/respiration are shown to affect the calculated apparent meltwater fractions. These processes can result in a false meltwater signature, creating misleading apparent glacial meltwater pathways. An alternative glacial meltwater calculation is suggested, using a pseudo–Circumpolar Deep Water endpoint and using an artificial increase in uncertainty of the dissolved oxygen measurements. The pseudo–Circumpolar Deep Water characteristics are affected by the under ice shelf bathymetry. The glacial meltwater fractions reveal a pathway for 2014 meltwater leading to the west of Pine Island Ice Shelf, along the coastline.

Denotes content that is immediately available upon publication as open access.

This article is licensed under a Creative Commons Attribution 4.0 license (http://creativecommons.org/licenses/by/4.0/).

© 2017 American Meteorological Society.

Corresponding author e-mail: Louise C. Biddle, louise.biddle@uea.ac.uk
Save
  • Assmann, K. M., A. Jenkins, D. R. Shoosmith, D. P. Walker, S. S. Jacobs, and K. W. Nicholls, 2013: Variability of circumpolar deep water transport onto the Amundsen Sea continental shelf through a shelf break trough. J. Geophys. Res. Oceans, 118, 66036620, doi:10.1002/2013JC008871.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bamber, J. L., R. E. Riva, B. L. Vermeersen, and A. M. LeBrocq, 2009: Reassessment of the potential of the West Antarctic ice sheet. Science, 324, 901903, doi:10.1126/science.1169335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beaird, N., F. Straneo, and W. Jenkins, 2015: Spreading of Greenland meltwaters in the ocean revealed by noble gases. Geophys. Res. Lett., 42, 77057713, doi:10.1002/2015GL065003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, D., L. M. Rothstein, and A. J. Busalacchi, 1994: A hybrid vertical mixing scheme and its application to tropical ocean models. J. Phys. Oceanogr., 24, 21562179, doi:10.1175/1520-0485(1994)024<2156:AHVMSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ducklow, H. W., and Coauthors, 2015: Particle flux on the continental shelf in the Amundsen Sea Polynya and Western Antarctic Peninsula. Elementa Sci. Anthropocene, 3, 46, doi:10.12952/journal.elementa.000046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dutrieux, P., and Coauthors, 2014: Strong sensitivity of Pine Island ice-shelf melting to climatic variability. Science, 343, 174178, doi:10.1126/science.1244341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fofonoff, N., and R. Millard, 1983: Algorithms for computation of fundamental properties of seawater. UNESCO Tech. Paper in Marine Science 44, 58 pp. [Available online at http://unesdoc.unesco.org/images/0005/000598/059832eb.pdf.]

  • Greenbaum, J. S., and Coauthors, 2015: Ocean access to a cavity beneath Totten Glacier in East Antarctica. Nat. Geosci., 8, 294298, doi:10.1038/ngeo2388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heywood, K., and Coauthors, 2016: Between the devil and the deep blue sea: The role of the Amundsen Sea continental shelf in exchanges between ocean and ice shelves. Oceanography, 29 (4), 118129, doi:10.5670/oceanog.2016.104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IOC, SCOR, and IAPSO, 2010: The international thermodynamic equation of seawater–2010: Calculation and use of thermodynamics properties. IOC Manuals and Guides 56, UNESCO, 196 pp. [Available online at http://unesdoc.unesco.org/images/0018/001881/188170e.pdf.]

  • IPCC, 2014: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Cambridge University Press, 1132 pp.

  • Jacobs, S. S., and C. F. Giulivi, 2010: Large multidecadal salinity trends near the Pacific–Antarctic continental margin. J. Climate, 23, 45084524, doi:10.1175/2010JCLI3284.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobs, S. S., H. H. Hellmer, and A. Jenkins, 1996: Antarctic ice sheet melting in the southeast Pacific. Geophys. Res. Lett., 23, 957960, doi:10.1029/96GL00723.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobs, S. S., A. Jenkins, C. F. Giulivi, and P. Dutrieux, 2011: Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf. Nat. Geosci., 4, 519523, doi:10.1038/ngeo1188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobs, S. S., A. Jenkins, H. Hellmer, C. Giulivi, F. Nitsche, B. Huber, and R. Guerrero, 2012: The Amundsen Sea and the Antarctic Ice Sheet. Oceanography, 25 (3), 154163, doi:10.5670/oceanog.2012.90.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenkins, A., 1999: The impact of melting ice on ocean waters. J. Phys. Oceanogr., 29, 23702381, doi:10.1175/1520-0485(1999)029<2370:TIOMIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenkins, A., and S. Jacobs, 2008: Circulation and melting beneath George VI Ice Shelf, Antarctica. J. Geophys. Res., 113, C04013, doi:10.1029/2007JC004449.

    • Search Google Scholar
    • Export Citation
  • Jenkins, A., P. Dutrieux, S. Jacobs, S. D. McPhail, J. R. Perrett, A. T. Webb, and D. White, 2010: Observations beneath Pine Island Glacier in West Antarctica and implications for its retreat. Nat. Geosci., 3, 468472, doi:10.1038/ngeo890.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenkins, A., P. Dutrieux, S. Jacobs, S. Mcphail, J. Perrett, A. Webb, and D. White, 2012: Autonomous underwater vehicle exporation of the ocean cavity beneath an Antarctic Ice Shelf. Oceanography, 25 (3), 202203, doi:10.5670/oceanog.2012.95.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenkins, A., P. Dutrieux, S. Jacobs, E. Steig, G. Gudmundsson, J. Smith, and K. Heywood, 2016: Decadal ocean forcing and Antarctic ice sheet response: Lessons from the Amundsen Sea. Oceanography, 29 (4), 106117, doi:10.5670/oceanog.2016.103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joughin, I., B. E. Smith, and B. Medley, 2014: Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica. Science, 344, 735739, doi:10.1126/science.1249055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, I., D. Hahm, T. S. Rhee, T. W. Kim, C.-S. Kim, and S. Lee, 2016: The distribution of glacial meltwater in the Amundsen Sea, Antarctica, revealed by dissolved helium and neon. J. Geophys. Res. Oceans, 121, 16541666, doi:10.1002/2015JC011211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kraus, E. B., and J. S. Turner, 1967: A one-dimensional model of the seasonal thermocline II. The general theory and its consequences. Tellus, 19, 98106, doi:10.3402/tellusa.v19i1.9753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lazarevich, P., and S. Stoermer, 2001: A Matlab version of the Price, Weller, Pinkel model. Accessed 29 March 2017. [Available online at http://www.po.gso.uri.edu/rafos/research/pwp/.]

  • Lazarevich, P., T. Rossby, and C. Mcneil, 2004: Oxygen variability in the near-surface waters of the northern North Atlantic: Observations and a model. J. Mar. Res., 62, 663683, doi:10.1357/0022240042387547.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loose, B., and W. J. Jenkins, 2014: The five stable noble gases are sensitive unambiguous tracers of glacial meltwater. Geophys. Res. Lett., 41, 28352841, doi:10.1002/2013GL058804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loose, B., W. R. McGillis, P. Schlosser, D. Perovich, and T. Takahashi, 2009: Effects of freezing, growth, and ice cover on gas transport processes in laboratory seawater experiments. Geophys. Res. Lett., 36, L05603, doi:10.1029/2008GL036318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martz, T. R., K. S. Johnson, and S. C. Riser, 2008: Ocean metabolism observed with oxygen sensors on profiling floats in the South Pacific. Limnol. Oceanogr., 53, 20942111, doi:10.4319/lo.2008.53.5_part_2.2094.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakayama, Y., M. Schröder, and H. Hellmer, 2013: From circumpolar deep water to the glacial meltwater plume on the eastern Amundsen Shelf. Deep-Sea Res. I, 77, 5062, doi:10.1016/j.dsr.2013.04.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakayama, Y., R. Timmermann, C. B. Rodehacke, M. Schröder, and H. H. Hellmer, 2014: Modeling the spreading of glacial meltwater from the Amundsen and Bellingshausen Seas. Geophys. Res. Lett., 41, 79427949, doi:10.1002/2014GL061600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., and Coauthors, 2017: Vigorous lateral export of the meltwater outflow from beneath an Antarctic ice shelf. Nature, 542, 219222, doi:10.1038/nature20825.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., 1975: Deepening of wind-mixed layer. J. Mar. Res., 33, 405422.

  • Niiler, P. P., and E. B. Kraus, 1977: One-dimensional models of the upper ocean. Modelling and Prediction of the Upper Layers of the Ocean, E. B. Kraus, Ed., Pergamon, 143–172.

  • Orsi, A. H., T. Whitworth, and W. D. Nowlin, 1995: On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res. I, 42, 641673, doi:10.1016/0967-0637(95)00021-W.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paolo, F. S., H. A. Fricker, and L. Padman, 2015: Volume loss from Antarctic ice shelves is accelerating. Science, 348, 327332, doi:10.1126/science.aaa0940.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Payne, A. J., A. Vieli, A. P. Shepherd, D. J. Wingham, and E. Rignot, 2004: Recent dramatic thinning of largest West Antarctic ice stream triggered by oceans. Geophys. Res. Lett., 31, L23401, doi:10.1029/2004GL021284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., R. A. Weller, and R. Pinkel, 1986: Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res., 91, 84118427, doi:10.1029/JC091iC07p08411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pritchard, H. D., S. R. M. Ligtenberg, H. A. Fricker, D. G. Vaughan, M. R. van den Broeke, and L. Padman, 2012: Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature, 484, 502505, doi:10.1038/nature10968.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall-Goodwin, E., and Coauthors, 2015: Freshwater distributions and water mass structure in the Amundsen Sea Polynya region, Antarctica. Elementa Sci. Anthropocene, 3, 65, doi:10.12952/journal.elementa.000065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, G., M. R. Wadley, K. J. Heywood, D. P. Stevens, and H. T. Banks, 2005: Short-term climate response to a freshwater pulse in the Southern Ocean. Geophys. Res. Lett., 32, L03S03, doi:10.1029/2004GL020679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rignot, E., S. Jacobs, J. Mouginot, and B. Scheuchl, 2013: Ice-shelf melting around Antarctica. Science, 341, 266270, doi:10.1126/science.1235798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2006: The NCEP Climate Forecast System. J. Climate, 19, 34833517, doi:10.1175/JCLI3812.1.

  • Schodlok, M. P., D. Menemenlis, E. Rignot, and M. Studinger, 2012: Sensitivity of the ice-shelf/ocean system to the sub-ice-shelf cavity shape measured by NASA IceBridge in Pine Island Glacier, West Antarctica. Ann. Glaciol., 53, 156162, doi:10.3189/2012AoG60A073.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammerjohn, S. E., and Coauthors, 2015: Seasonal sea ice changes in the Amundsen Sea, Antarctica, over the period of 1979–2014. Elementa Sci. Anthropocene, 3, 55, doi:10.12952/journal.elementa.000055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thoma, M., A. Jenkins, D. Holland, and S. Jacobs, 2008: Modelling Circumpolar Deep Water intrusions on the Amundsen Sea continental shelf, Antarctica. Geophys. Res. Lett., 35, L18602, doi:10.1029/2008GL034939.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurnherr, A., S. S. Jacobs, P. Dutrieux, and C. F. Giulivi, 2014: Export and circulation of ice cavity water in Pine Island Bay, West Antarctica. J. Geophys. Res. Oceans, 119, 17541764, doi:10.1002/2013JC009307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomczak, M., 1981: A multi-parameter extension of temperature/salinity diagram techniques for the analysis of non-isopycnal mixing. Prog. Oceanogr., 10, 147171, doi:10.1016/0079-6611(81)90010-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomczak, M., and D. G. B. Large, 1989: Optimum multiparameter analysis of mixing in the thermocline of the eastern Indian Ocean. J. Geophys. Res., 94, 16 14116 149, doi:10.1029/JC094iC11p16141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wåhlin, A. K., and Coauthors., 2013: Variability of warm deep water inflow in a submarine trough on the Amundsen Sea Shelf. J. Phys. Oceanogr., 43, 20542070, doi:10.1175/JPO-D-12-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, D. P., A. Jenkins, K. M. Assmann, D. R. Shoosmith, and M. A. Brandon, 2013: Oceanographic observations at the shelf break of the Amundsen Sea, Antarctica. J. Geophys. Res. Oceans, 118, 29062918, doi:10.1002/jgrc.20212.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wanninkhof, R., 2014: Relationship between wind speed and gas exchange over the ocean. Limnol. Oceanogr. Methods, 12, 351362, doi:10.4319/lom.2014.12.351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webber, B., and Coauthors, 2017: Mechanisms driving variability in the ocean forcing of Pine Island Glacier. Nat. Commun., 8, 14507, doi:10.1038/ncomms14507.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1081 341 39
PDF Downloads 774 249 30