Elevated Mixing in the Periphery of Mesoscale Eddies in the South China Sea

Qingxuan Yang Physical Oceanography Laboratory/CIMST, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Qingxuan Yang in
Current site
Google Scholar
PubMed
Close
,
Wei Zhao Physical Oceanography Laboratory/CIMST, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Wei Zhao in
Current site
Google Scholar
PubMed
Close
,
Xinfeng Liang College of Marine Science, University of South Florida, St. Petersburg, Florida

Search for other papers by Xinfeng Liang in
Current site
Google Scholar
PubMed
Close
,
Jihai Dong Marine Science College, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Jihai Dong in
Current site
Google Scholar
PubMed
Close
, and
Jiwei Tian Physical Oceanography Laboratory/CIMST, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Jiwei Tian in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Direct microstructure observations across three warm mesoscale eddies were conducted in the northern South China Sea during the field experiments in July 2007, December 2013, and January 2014, respectively, along with finestructure measurements. An important finding was that turbulent mixing in the mixed layer was considerably elevated in the periphery of each of these eddies, with a mixing level 5–7 times higher than that in the eddy center. To explore the mechanism behind the high mixing level, this study carried out analyses of the horizontal wavenumber spectrum of velocities and spectral fluxes of kinetic energy. Spectral slopes showed a power law of k−2 in the eddy periphery and of k−3 in the eddy center, consistent with the result that the kinetic energy of submesoscale motion in the eddy periphery was more greatly energized than that in the center. Spectral fluxes of kinetic energy also revealed a forward energy cascade toward smaller scales at the wavelength of kilometers in the eddy periphery. This study illustrated a possible route for energy cascading from balanced mesoscale dynamics to unbalanced submesoscale behavior, which eventually furnished turbulent mixing in the upper ocean.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Jiwei Tian, tianjw@ouc.edu.cn

Abstract

Direct microstructure observations across three warm mesoscale eddies were conducted in the northern South China Sea during the field experiments in July 2007, December 2013, and January 2014, respectively, along with finestructure measurements. An important finding was that turbulent mixing in the mixed layer was considerably elevated in the periphery of each of these eddies, with a mixing level 5–7 times higher than that in the eddy center. To explore the mechanism behind the high mixing level, this study carried out analyses of the horizontal wavenumber spectrum of velocities and spectral fluxes of kinetic energy. Spectral slopes showed a power law of k−2 in the eddy periphery and of k−3 in the eddy center, consistent with the result that the kinetic energy of submesoscale motion in the eddy periphery was more greatly energized than that in the center. Spectral fluxes of kinetic energy also revealed a forward energy cascade toward smaller scales at the wavelength of kilometers in the eddy periphery. This study illustrated a possible route for energy cascading from balanced mesoscale dynamics to unbalanced submesoscale behavior, which eventually furnished turbulent mixing in the upper ocean.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Jiwei Tian, tianjw@ouc.edu.cn
Save
  • Buijsman, M., S. Legg, and J. Klymak, 2012: Double-ridge internal tide interference and its effect on dissipation in Luzon Strait. J. Phys. Oceanogr., 42, 13371356, doi:10.1175/JPO-D-11-0210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., and R. Ferrari, 2013: Interpreting energy and tracer spectra of upper-ocean turbulence in the submesoscale range (1–200 km). J. Phys. Oceanogr., 43, 24562474, doi:10.1175/JPO-D-13-063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., R. Ferrari, J. M. Klymak, and J. Gula, 2015: Seasonality in submesoscale turbulence. Nat. Commun., 6, 6862, doi:10.1038/ncomms7862.

  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008a: Mesoscale to submesoscale transition in the California Current System. Part I: Flow structure, eddy flux, and observational tests. J. Phys. Oceanogr., 38, 2943, doi:10.1175/2007JPO3671.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008b: Mesoscale to submesoscale transition in the California Current System. Part III: Energy balance and flux. J. Phys. Oceanogr., 38, 22562269, doi:10.1175/2008JPO3810.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaultier, L., B. Djath, J. Verron, J. M. Brankart, P. Brasseur, and A. Melet, 2014: Inversion of submesoscale patterns from a high-resolution Solomon Sea model: Feasibility assessment. J. Geophys. Res. Oceans, 119, 45204541, doi:10.1002/2013JC009660.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jan, S., C.-S. Chern, J. Wang, and S.-Y. Chao, 2007: Generation of diurnal K1 internal tide in the Luzon Strait and its influence on surface tide in the South China Sea. J. Geophys. Res., 112, C06019, doi:10.1029/2006JC004003.

    • Search Google Scholar
    • Export Citation
  • Jan, S., R.-C. Lien, and C.-H. Ting, 2008: Numerical study of baroclinic tides in Luzon Strait. J. Oceanogr., 64, 789802, doi:10.1007/s10872-008-0066-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klymak, J., R. Pinkel, C.-T. Liu, A. Liu, and L. David, 2006: Prototypical solitons in the South China Sea. Geophys. Res. Lett., 33, L11607, doi:10.1029/2006GL025932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W., and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324336, doi:10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lien, R.-C., F. Henyey, B. Ma, and Y. Yang, 2014: Large-amplitude internal solitary waves observed in the northern South China Sea: Properties and energetics. J. Phys. Oceanogr., 44, 10951115, doi:10.1175/JPO-D-13-088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., Y. He, D. Wang, T. Liu, and S. Cai, 2015: Observed enhanced internal tides in winter near the Luzon Strait. J. Geophys. Res. Oceans, 120, 66376652, doi:10.1002/2015JC011131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., and I. Lozovatsky, 2012: Upper pycnocline turbulence in the northern South China Sea. Chin. Sci. Bull., 57, 23022306, doi:10.1007/s11434-012-5137-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2016: Submesoscale currents in the ocean. Proc. Roy. Soc., A472, 20160117, doi:10.1098/rspa.2016.0117.

  • Niwa, Y., and T. Hibiya, 2004: Three-dimensional numerical simulation of M2 internal tides in the East China Sea. J. Geophys. Res., 109, C04027, doi:10.1029/2003JC001923.

    • Search Google Scholar
    • Export Citation
  • Oakey, N. S., and J. A. Elliott, 1982: Dissipation within the surface mixed layer. J. Phys. Oceanogr., 12, 171185, doi:10.1175/1520-0485(1982)012<0171:DWTSML>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 8389, doi:10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rimac, A., J. Storch, and C. Eden, 2016: The total energy flux leaving the ocean’s mixed layer. J. Phys. Oceanogr., 46, 18851900, doi:10.1175/JPO-D-15-0115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shay, T., and M. Gregg, 1986: Convectively driven turbulent mixing in the upper ocean. J. Phys. Oceanogr., 16, 17771798, doi:10.1175/1520-0485(1986)016<1777:CDTMIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheen, K. L., and Coauthors, 2013: Rates and mechanisms of turbulent dissipation and mixing in the Southern Ocean: Results from the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). J. Geophys. Res. Oceans, 118, 27742792, doi:10.1002/jgrc.20217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laurent, L., H. Simmons, T. Tang, and Y. Wang, 2011: Turbulent properties of internal waves in the South China Sea. Oceanography, 24, 7887, doi:10.5670/oceanog.2011.96.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laurent, L., A. Naveira Garabato, J. Ledwell, A. Thurnherr, J. Toole, and A. Watson, 2012: Turbulence and diapycnal mixing in Drake Passage. J. Phys. Oceanogr., 42, 21432152, doi:10.1175/JPO-D-12-027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, H., Q. Yang, W. Zhao, X. Liang, and J. Tian, 2016: Temporal variability of diapycnal mixing in the northern South China Sea. J. Geophys. Res. Oceans, 121, 88408848, doi:10.1002/2016JC012044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, J., Q. Yang, and W. Zhao, 2009: Enhanced diapycnal mixing in the South China Sea. J. Phys. Oceanogr., 39, 31913203, doi:10.1175/2009JPO3899.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., D. Chen, and J. Su, 2008: Winter eddy genesis in the eastern South China Sea due to orographic wind jets. J. Phys. Oceanogr., 38, 726732, doi:10.1175/2007JPO3868.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolk, F., H. Yamazaki, L. Seuront, and R. G. Lueck, 2002: A new free-fall profiler for measuring biophysical microstructure. J. Atmos. Oceanic Technol., 19, 780793, doi:10.1175/1520-0426(2002)019<0780:ANFFPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, J., J. Xie, Z. Chen, S. Cai, and X. Long, 2012: Enhanced mixing induced by internal solitary waves in the South China Sea. Cont. Shelf Res., 49, 3443, doi:10.1016/j.csr.2012.09.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Q., L. Zhou, J. Tian, and W. Zhao, 2014a: The roles of Kuroshio intrusion and mesoscale eddy in upper mixing in the northern South China Sea. J. Coastal Res., 30, 192198, doi:10.2112/JCOASTRES-D-13-00012.1.

    • Search Google Scholar
    • Export Citation
  • Yang, Q., J. Tian, W. Zhao, X. Liang, and L. Zhou, 2014b: Observations of turbulence on the shelf and slope of northern South China Sea. Deep-Sea Res. I, 87, 4352, doi:10.1016/j.dsr.2014.02.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Q., W. Zhao, X. Liang, and J. Tian, 2016: Three-dimensional distribution of turbulent mixing in the South China Sea. J. Phys. Oceanogr., 46, 769788, doi:10.1175/JPO-D-14-0220.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, W., C. Zhou, J. Tian, Q. Yang, B. Wang, L. Xie, and T. Qu, 2014: Deep water circulation in the Luzon Strait. J. Geophys. Res. Oceans, 119, 790804, doi:10.1002/2013JC009587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Z., 2014: Internal tide radiation from the Luzon Strait. J. Geophys. Res. Oceans, 119, 54345448, doi:10.1002/2014JC010014.

  • Zhao, Z., V. Klemas, Q. Zheng, and X.-H. Yan, 2004: Remote sensing evidence for baroclinic tide origin of internal solitary waves in the northeastern South China Sea. Geophys. Res. Lett., 31, L06302, doi:10.1029/2003GL019077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, Q., H. Lin, J. Meng, X. Hu, Y. T. Song, Y. Zhang, and C. Li, 2008: Sub-mesoscale ocean vortex trains in the Luzon Strait. J. Geophys. Res., 113, C04032, doi:10.1029/2007JC004362.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1309 607 100
PDF Downloads 815 255 30