The Relationship between Double-Diffusive Intrusions and Staircases in the Arctic Ocean

Yana Bebieva Department of Geology and Geophysics, Yale University, New Haven, Connecticut

Search for other papers by Yana Bebieva in
Current site
Google Scholar
PubMed
Close
and
Mary-Louise Timmermans Department of Geology and Geophysics, Yale University, New Haven, Connecticut

Search for other papers by Mary-Louise Timmermans in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The origin of double-diffusive staircases in the Arctic Ocean is investigated for the particular background setting in which both temperature and salinity increase with depth. Motivated by observations that show the coexistence of thermohaline intrusions and double-diffusive staircases, a linear stability analysis is performed on the governing equations to determine the conditions under which staircases form. It is shown that a double-diffusive staircase can result from interleaving motions if the observed bulk vertical density ratio is below a critical vertical density ratio estimated for particular lateral and vertical background temperature and salinity gradients. Vertical background temperature and salinity gradients dominate over horizontal gradients in determining whether staircases form, with the linear theory indicating that perturbations to stronger vertical temperature gradients are more likely to give rise to a staircase. Examination of Arctic Ocean temperature and salinity measurements indicates that observations are consistent with the theory for reasonable estimates of eddy diffusivity and viscosity.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Yana Bebieva, yana.bebieva@yale.edu

Abstract

The origin of double-diffusive staircases in the Arctic Ocean is investigated for the particular background setting in which both temperature and salinity increase with depth. Motivated by observations that show the coexistence of thermohaline intrusions and double-diffusive staircases, a linear stability analysis is performed on the governing equations to determine the conditions under which staircases form. It is shown that a double-diffusive staircase can result from interleaving motions if the observed bulk vertical density ratio is below a critical vertical density ratio estimated for particular lateral and vertical background temperature and salinity gradients. Vertical background temperature and salinity gradients dominate over horizontal gradients in determining whether staircases form, with the linear theory indicating that perturbations to stronger vertical temperature gradients are more likely to give rise to a staircase. Examination of Arctic Ocean temperature and salinity measurements indicates that observations are consistent with the theory for reasonable estimates of eddy diffusivity and viscosity.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Yana Bebieva, yana.bebieva@yale.edu
Save
  • Aagaard, K., L. Coachman, and E. Carmack, 1981: On the halocline of the Arctic Ocean. Deep-Sea Res., 28A, 529545, doi:10.1016/0198-0149(81)90115-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bebieva, Y., and M.-L. Timmermans, 2016: An examination of double-diffusive processes in a mesoscale eddy in the Arctic Ocean. J. Geophys. Res. Oceans, 121, 457475, doi:10.1002/2015JC011105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bertsekas, D. P., 2014: Constrained Optimization and Lagrange Multiplier Methods. Academic Press, 344 pp.

  • Carmack, E. C., K. Aagaard, J. H. Swift, R. G. Perkin, F. A. McLaughlin, R. W. Macdonald, and E. P. Jones, 1998: Thermohaline transitions. Physical Processes in Lakes and Oceans, J. Imberger, Ed., Coastal and Estuarine Studies, Vol. 54, Amer. Geophys. Union, 179–186.

    • Crossref
    • Export Citation
  • Carmack, E. C., and Coauthors, 2015: Toward quantifying the increasing role of oceanic heat in sea ice loss in the new Arctic. Bull. Amer. Meteor. Soc., 96, 20792105, doi:10.1175/BAMS-D-13-00177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M., 1987: Diapycnal mixing in the thermocline: A review. J. Geophys. Res., 92, 52495286, doi:10.1029/JC092iC05p05249.

  • Guthrie, J. D., J. H. Morison, and I. Fer, 2013: Revisiting internal waves and mixing in the Arctic Ocean. J. Geophys. Res. Oceans, 118, 39663977, doi:10.1002/jgrc.20294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guthrie, J. D., I. Fer, and J. Morison, 2015: Observational validation of the diffusive convection flux laws in the Amundsen Basin, Arctic Ocean. J. Geophys. Res. Oceans, 120, 78807896, doi:10.1002/2015JC010884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hebert, D., N. Oakey, and B. Ruddick, 1990: Evolution of a Mediterranean salt lens: Scalar properties. J. Phys. Oceanogr., 20, 14681483, doi:10.1175/1520-0485(1990)020<1468:EOAMSL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelley, D. E., 1990: Fluxes through diffusive staircases: A new formulation. J. Geophys. Res., 95, 33653371, doi:10.1029/JC095iC03p03365.

  • Kelley, D. E., 2001: Six questions about double-diffusive convection. From Stirring to Mixing in a Stratified Ocean: Proc. ‘Aha Huliko’a Hawaiian Winter Workshop, Honolulu, HI, University of Hawai‘i at Mānoa, 191–198. [Available online at http://www.soest.hawaii.edu/PubServices/2001pdfs/Kelley.pdf.]

  • Kelley, D. E., H. Fernando, A. Gargett, J. Tanny, and E. Özsoy, 2003: The diffusive regime of double-diffusive convection. Prog. Oceanogr., 56, 461481, doi:10.1016/S0079-6611(03)00026-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, O. S., and J. Y. Holyer, 1986: The effect of rotation on double-diffusive interleaving. J. Fluid Mech., 162, 2333, doi:10.1017/S0022112086001908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishfield, R., J. Toole, A. Proshutinsky, and M.-L. Timmermans, 2008: Automated Ice-Tethered Profilers for seawater observations under pack ice in all seasons. J. Atmos. Oceanic Technol., 25, 20912105, doi:10.1175/2008JTECHO587.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., 2003: A review of oceanic salt-fingering theory. Prog. Oceanogr., 56, 399417, doi:10.1016/S0079-6611(03)00027-2.

  • Li, Y., and T. J. McDougall, 2015: Double-diffusive interleaving: Properties of the steady-state solution. J. Phys. Oceanogr., 45, 813835, doi:10.1175/JPO-D-13-0236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maykut, G. A., and N. Untersteiner, 1971: Some results from a time-dependent thermodynamic model of sea ice. J. Geophys. Res., 76, 15501575, doi:10.1029/JC076i006p01550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., 1985: Double-diffusive interleaving. Part II: Finite amplitude, steady state interleaving. J. Phys. Oceanogr., 15, 15421556, doi:10.1175/1520-0485(1985)015<1542:DDIPIF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melling, H., R. Lake, D. Topham, and D. Fissel, 1984: Oceanic thermal structure in the western Canadian Arctic. Cont. Shelf Res., 3, 233258, doi:10.1016/0278-4343(84)90010-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merryfield, W. J., 2000: Origin of thermohaline staircases. J. Phys. Oceanogr., 30, 10461068, doi:10.1175/1520-0485(2000)030<1046:OOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merryfield, W. J., 2002: Intrusions in double-diffusively stable Arctic waters: Evidence for differential mixing? J. Phys. Oceanogr., 32, 14521459, doi:10.1175/1520-0485(2002)032<1452:IIDDSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neal, V. T., S. Neshyba, and W. Denner, 1969: Thermal stratification in the Arctic Ocean. Science, 166, 373374, doi:10.1126/science.166.3903.373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Padman, L., 1994: Momentum fluxes through sheared oceanic thermohaline steps. J. Geophys. Res., 99, 22 49122 499, doi:10.1029/94JC01741.

  • Padman, L., and T. M. Dillon, 1987: Vertical heat fluxes through the Beaufort Sea thermohaline staircase. J. Geophys. Res., 92, 10 79910 806, doi:10.1029/JC092iC10p10799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Padman, L., and T. M. Dillon, 1988: On the horizontal extent of the Canada Basin thermohaline steps. J. Phys. Oceanogr., 18, 14581462, doi:10.1175/1520-0485(1988)018<1458:OTHEOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Padman, L., and T. M. Dillon, 1989: Thermal microstructure and internal waves in the Canada Basin diffusive staircase. Deep-Sea Res., 36A, 531542, doi:10.1016/0198-0149(89)90004-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., J. A. Richter-Menge, K. F. Jones, and B. Light, 2008: Sunlight, water, and ice: Extreme Arctic sea ice melt during the summer of 2007. Geophys. Res. Lett., 35, L11501, doi:10.1029/2008GL034007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polyakov, I. V., A. V. Pnyushkov, R. Rember, V. V. Ivanov, Y.-D. Lenn, L. Padman, and E. C. Carmack, 2012: Mooring-based observations of double-diffusive staircases over the Laptev Sea slope. J. Phys. Oceanogr., 42, 95109, doi:10.1175/2011JPO4606.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Radko, T., 2013: Double-Diffusive Convection. Cambridge University Press, 344 pp.

  • Radko, T., J. Flanagan, S. Stellmach, and M.-L. Timmermans, 2014: Double-diffusive recipes. Part II: Layer-merging events. J. Phys. Oceanogr., 44, 12851305, doi:10.1175/JPO-D-13-0156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, O., 1894: On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Proc. Roy. Soc. London, 56, 4045, doi:10.1098/rspl.1894.0075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruddick, B., 1983: A practical indicator of the stability of the water column to double-diffusive activity. Deep-Sea Res., 30A, 11051107, doi:10.1016/0198-0149(83)90063-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruddick, B., and D. Hebert, 1988: The mixing of meddy “Sharon.” Small-Scale Turbulence and Mixing in the Ocean, J. C. J. Nihoul and B. M. Jamart, Eds., Elsevier Oceanography Series, Vol. 46, 249261, doi:10.1016/S0422-9894(08)70551-8.

    • Crossref
    • Export Citation
  • Ruddick, B., and O. Kerr, 2003: Oceanic thermohaline intrusions: Theory. Prog. Oceanogr., 56, 483497, doi:10.1016/S0079-6611(03)00029-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruddick, B., and K. Richards, 2003: Oceanic thermohaline intrusions: Observations. Prog. Oceanogr., 56, 499527, doi:10.1016/S0079-6611(03)00028-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmitt, R. W., 2003: Observational and laboratory insights into salt finger convection. Prog. Oceanogr., 56, 419433, doi:10.1016/S0079-6611(03)00033-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shibley, N., M.-L. Timmermans, J. Carpenter, and J. Toole, 2017: Spatial variability of the Arctic Ocean’s double-diffusive staircase. J. Geophys. Res. Oceans, 122, 980994, doi:10.1002/2016JC012419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sirevaag, A., and I. Fer, 2012: Vertical heat transfer in the Arctic Ocean: The role of double-diffusive mixing. J. Geophys. Res., 117, C07010, doi:10.1029/2012JC007910.

    • Search Google Scholar
    • Export Citation
  • Steele, M., W. Ermold, and J. Zhang, 2008: Arctic Ocean surface warming trends over the past 100 years. Geophys. Res. Lett., 35, L02614, doi:10.1029/2007GL031651.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, M. E., 1967: Lateral mixing of water masses. Deep-Sea Res. Oceanogr. Abstr., 14, 747753, doi:10.1016/S0011-7471(67)80011-1.

  • Timmermans, M.-L., 2015: The impact of stored solar heat on Arctic sea ice growth. Geophys. Res. Lett., 42, 63996406, doi:10.1002/2015GL064541.

  • Timmermans, M.-L., J. Toole, R. Krishfield, and P. Winsor, 2008: Ice-Tethered Profiler observations of the double-diffusive staircase in the Canada Basin thermocline. J. Geophys. Res., 113, C00A02, doi:10.1029/2008JC004829.

    • Search Google Scholar
    • Export Citation
  • Timmermans, M.-L., and Coauthors, 2014: Mechanisms of Pacific summer water variability in the Arctic’s central Canada Basin. J. Geophys. Res. Oceans, 119, 75237548, doi:10.1002/2014JC010273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toole, J. M., and D. T. Georgi, 1981: On the dynamics and effects of double-diffusively driven intrusions. Prog. Oceanogr., 10, 123145, doi:10.1016/0079-6611(81)90003-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toole, J. M., R. A. Krishfield, M.-L. Timmermans, and A. Proshutinsky, 2011: The Ice-Tethered Profiler: Argo of the Arctic. Oceanography, 24, 126135, doi:10.5670/oceanog.2011.64.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J., 1965: The coupled turbulent transports of salt and heat across a sharp density interface. Int. J. Heat Mass Transfer, 8, 759767, doi:10.1016/0017-9310(65)90022-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Veronis, G., 1965: On finite amplitude instability in thermohaline convection. J. Mar. Res., 23, 117.

  • Walsh, D., and B. Ruddick, 1995: Double-diffusive interleaving: The influence of nonconstant diffusivities. J. Phys. Oceanogr., 25, 348358, doi:10.1175/1520-0485(1995)025<0348:DDITIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, D., and B. Ruddick, 1998: Nonlinear equilibration of thermohaline intrusions. J. Phys. Oceanogr., 28, 10431070, doi:10.1175/1520-0485(1998)028<1043:NEOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, D., and B. Ruddick, 2000: Double-diffusive interleaving in the presence of turbulence: The effect of a nonconstant flux ratio. J. Phys. Oceanogr., 30, 22312245, doi:10.1175/1520-0485(2000)030<2231:DDIITP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, D., and E. Carmack, 2003: The nested structure of Arctic thermohaline intrusions. Ocean Modell., 5, 267289, doi:10.1016/S1463-5003(02)00056-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wettlaufer, J., 1991: Heat flux at the ice-ocean interface. J. Geophys. Res., 96, 72157236, doi:10.1029/90JC00081.

  • Woodgate, R. A., K. Aagaard, J. H. Swift, W. M. Smethie, and K. K. Falkner, 2007: Atlantic water circulation over the Mendeleev Ridge and Chukchi Borderland from thermohaline intrusions and water mass properties. J. Geophys. Res., 112, C02005, doi:10.1029/2005JC003416.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 552 139 7
PDF Downloads 497 124 4