A Closure for Internal Wave–Mean Flow Interaction. Part I: Energy Conversion

Dirk Olbers Alfred Wegener Institut für Polar- und Meeresforschung, Bremerhaven, and MARUM, Universität Bremen, Bremen, Germany

Search for other papers by Dirk Olbers in
Current site
Google Scholar
PubMed
Close
and
Carsten Eden Institut für Meereskunde, Universität Hamburg, Hamburg, Germany

Search for other papers by Carsten Eden in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

When internal (inertia-)gravity waves propagate in a vertically sheared geostrophic (eddying or mean) flow, they exchange energy with the flow. A novel concept parameterizing internal wave–mean flow interaction in ocean circulation models is demonstrated, based on the description of the entire wave field by the wave-energy density in physical and wavenumber space and its prognostic computation by the radiative transfer equation. The concept enables a simplification of the radiative transfer equation with a small number of reasonable assumptions and a derivation of simple but consistent parameterizations in terms of spectrally integrated energy compartments that are used as prognostic model variables. The effect of the waves on the mean flow in this paradigm is in accordance with the nonacceleration theorem: only in the presence of dissipation do waves globally exchange energy with the mean flow in the time mean. The exchange can have either direction. These basic features of wave–mean flow interaction are theoretically derived in a Wentzel–Kramers–Brillouin (WKB) approximation of the wave dynamics and confirmed in a suite of numerical experiments with unidirectional shear flow.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Carsten Eden, carsten.eden@uni-hamburg.de

Abstract

When internal (inertia-)gravity waves propagate in a vertically sheared geostrophic (eddying or mean) flow, they exchange energy with the flow. A novel concept parameterizing internal wave–mean flow interaction in ocean circulation models is demonstrated, based on the description of the entire wave field by the wave-energy density in physical and wavenumber space and its prognostic computation by the radiative transfer equation. The concept enables a simplification of the radiative transfer equation with a small number of reasonable assumptions and a derivation of simple but consistent parameterizations in terms of spectrally integrated energy compartments that are used as prognostic model variables. The effect of the waves on the mean flow in this paradigm is in accordance with the nonacceleration theorem: only in the presence of dissipation do waves globally exchange energy with the mean flow in the time mean. The exchange can have either direction. These basic features of wave–mean flow interaction are theoretically derived in a Wentzel–Kramers–Brillouin (WKB) approximation of the wave dynamics and confirmed in a suite of numerical experiments with unidirectional shear flow.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Carsten Eden, carsten.eden@uni-hamburg.de
Save
  • Alexander, M., and Coauthors, 2010: Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Quart. J. Roy. Meteor. Soc., 136, 11031124, doi:10.1002/qj.637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M., 2001: Internal swell generation: The spatial distribution of energy flux from the wind to mixed layer near-inertial motions. J. Phys. Oceanogr., 31, 23592368, doi:10.1175/1520-0485(2001)031<2359:ISGTSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen–Palm relation and the zonal mean acceleration. J. Atmos. Sci., 33, 20312048, doi:10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becker, E., 2012: Dynamical control of the middle atmosphere. Space Sci. Rev., 168, 283314, doi:10.1007/s11214-011-9841-5.

  • Boyd, J. P., 1976: The noninteraction of waves with the zonally averaged flow on a spherical earth and the interrelationships on eddy fluxes of energy, heat and momentum. J. Atmos. Sci., 33, 22852291, doi:10.1175/1520-0469(1976)033<2285:TNOWWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., and C. J. Garrett, 1968: Wavetrains in inhomogeneous moving media. Proc. Roy. Soc. London, 302A, 529554, doi:10.1098/rspa.1968.0034.

    • Search Google Scholar
    • Export Citation
  • Brown, E. D., and W. B. Owens, 1981: Observations of the horizontal interactions between the internal wave field and the mesoscale flow. J. Phys. Oceanogr., 11, 14741480, doi:10.1175/1520-0485(1981)011<1474:OOTHIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brüggemann, N., and C. Eden, 2015: Routes to dissipation under different dynamical conditions. J. Phys. Oceanogr., 45, 21492168, doi:10.1175/JPO-D-14-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bühler, O., and M. E. Mcintyre, 2005: Wave capture and wave–vortex duality. J. Fluid Mech., 534, 6795, doi:10.1017/S0022112005004374.

  • Cairns, J. L., and G. O. Williams, 1976: Internal wave observations from a midwater float. J. Geophys. Res., 81, 19431950, doi:10.1029/JC081i012p01943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eden, C., and R. J. Greatbatch, 2008: Diapycnal mixing by mesoscale eddies. Ocean Modell., 23, 113120, doi:10.1016/j.ocemod.2008.04.006.

  • Eden, C., and D. Olbers, 2014: An energy compartment model for propagation, nonlinear interaction and dissipation of internal gravity waves. J. Phys. Oceanogr., 44, 20932106, doi:10.1175/JPO-D-13-0224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eden, C., and D. Olbers, 2017: A closure for internal wave–mean flow interaction. Part II: Wave drag. J. Phys. Oceanogr., 47, 14031412, doi:10.1175/JPO-D-16-0056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Falahat, S., J. Nycander, F. Roquet, and M. Zarroug, 2014: Global calculation of tidal energy conversion into vertical normal modes. J. Phys. Oceanogr., 44, 32253244, doi:10.1175/JPO-D-14-0002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ford, R., M. McIntyre, and W. Norton, 2000: Balance and the slow quasimanifold: Some explicit results. J. Atmos. Sci., 57, 12361254, doi:10.1175/1520-0469(2000)057<1236:BATSQS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and T. M. Joyce, 1979: On the internal wave variability during the internal wave experiment (IWEX). J. Geophys. Res., 84, 769776, doi:10.1029/JC084iC02p00769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 1003, doi:10.1029/2001RG000106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., and W. Munk, 1975: Space-time scales of internal waves: A progress report. J. Geophys. Res., 80, 291297, doi:10.1029/JC080i003p00291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., 1989: Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 94, 96869698, doi:10.1029/JC094iC07p09686.

  • Henyey, F., J. Wright, and S. Flatté, 1986: Energy and action flow through the internal wave field: An eikonal approach. J. Geophys. Res., 91, 84878495, doi:10.1029/JC091iC07p08487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, K., 1987: Statistical Mechanics. 2nd ed. Wiley, 493 pp.

  • Lighthill, J., 1978: Waves in Fluids. Cambridge University Press, 516 pp.

  • Lvov, Y. V., K. L. Polzin, and N. Yokoyama, 2012: Resonant and near-resonant internal wave interactions. J. Phys. Oceanogr., 42, 669691, doi:10.1175/2011JPO4129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McComas, C. H., 1977: Equilibrium mechanisms within the oceanic internal wave field. J. Phys. Oceanogr., 7, 836845, doi:10.1175/1520-0485(1977)007<0836:EMWTOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McComas, C. H., and P. Müller, 1981: Time scales of resonant interactions among oceanic internal waves. J. Phys. Oceanogr., 11, 139147, doi:10.1175/1520-0485(1981)011<0139:TSORIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, M., T. Palmer, and R. Swinbank, 1989: Parametrization and influence of subgridscale orography in general circulation and numerical weather prediction models. Meteor. Atmos. Phys., 40, 84109, doi:10.1007/BF01027469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molemaker, M. J., J. C. McWilliams, and X. Capet, 2010: Balanced and unbalanced routes to dissipation in an equilibrated Eady flow. J. Fluid Mech., 654, 3563, doi:10.1017/S0022112009993272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muench, J. E., and E. Kunze, 1999: Internal wave interactions with equatorial deep jets. Part I: Momentum-flux divergence. J. Phys. Oceanogr., 29, 14531467, doi:10.1175/1520-0485(1999)029<1453:IWIWED>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muench, J. E., and E. Kunze, 2000: Internal wave interactions with equatorial deep jets. Part II: Acceleration of the jets. J. Phys. Oceanogr., 30, 20992110, doi:10.1175/1520-0485(2000)030<2099:IWIWED>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, P., 1976: On the diffusion of momentum and mass by internal gravity waves. J. Fluid Mech., 77, 789823, doi:10.1017/S0022112076002899.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, P., J. McWilliams, and M. Molemaker, 2005: Routes to dissipation in the ocean: The 2D/3D turbulence conundrum. Marine Turbulence: Theories, Observations and Models, H. Baumert, J. Simpson, and J. Sündermann, Eds., Cambridge University Press, 397–405.

  • Munk, W., 1981: Internal waves and small-scale processes. Evolution of Physical Oceanography, B. A. Warren and C. Wunsch, Eds., MIT Press, 264–291.

  • Muraschko, J., M. Fruman, U. Achatz, S. Hickel, and Y. Toledo, 2015: On the application of Wentzel–Kramer–Brillouin theory for the simulation of the weakly nonlinear dynamics of gravity waves. Quart. J. Roy. Meteor. Soc., 141, 676697, doi:10.1002/qj.2381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2011: Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean. Geophys. Res. Lett., 38, L08610, doi:10.1029/2011GL046576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nycander, J., 2005: Generation of internal waves in the deep ocean by tides. J. Geophys. Res., 110, C10028, doi:10.1029/2004JC002487.

  • Olbers, D., 1983: Models of the oceanic internal wave field. Rev. Geophys. Space Phys., 21, 15671606, doi:10.1029/RG021i007p01567.

  • Olbers, D., and C. Eden, 2013: A global model for the diapycnal diffusivity induced by internal gravity waves. J. Phys. Oceanogr., 43, 17591779, doi:10.1175/JPO-D-12-0207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olbers, D., J. Willebrand, and C. Eden, 2012: Ocean Dynamics. Springer, 703 pp.

    • Crossref
    • Export Citation
  • Pinkel, R., 2005: Near-inertial wave propagation in the western arctic. J. Phys. Oceanogr., 35, 645665, doi:10.1175/JPO2715.1.

  • Polzin, K. L., 2008: Mesoscale eddy-internal wave coupling. Part I: Symmetry, wave capture, and results from the mid-ocean dynamics experiment. J. Phys. Oceanogr., 38, 25562574, doi:10.1175/2008JPO3666.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., 2010: Mesoscale eddy-internal wave coupling. Part II: Energetics and results from POLYMODE. J. Phys. Oceanogr., 40, 789801, doi:10.1175/2009JPO4039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., J. M. Toole, and R. W. Schmitt, 1995: Finescale parameterizations of turbulent dissipation. J. Phys. Oceanogr., 25, 306328, doi:10.1175/1520-0485(1995)025<0306:FPOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rimac, A., J.-S. von Storch, C. Eden, and H. Haak, 2013: The influence of high-resolution wind stress field on the power input to near-inertial motions in the ocean. Geophys. Res. Lett., 40, 48824886, doi:10.1002/grl.50929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruddick, B. R., and T. M. Joyce, 1979: Observations of interaction between the internal wavefield and low-frequency flows in the North Atlantic. J. Phys. Oceanogr., 9, 498517, doi:10.1175/1520-0485(1979)009<0498:OOIBTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, R., J. Goff, A. Naveira Garabato, and A. Nurser, 2011: Global rate and spectral characteristics of internal gravity wave generation by geostrophic flow over topography. J. Geophys. Res., 116, C09029, doi:10.1029/2011JC007005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, S., R. Bleck, C. Rooth, J. Dukowicz, E. Chassignet, and P. Killworth, 1999: Inclusion of thermobaricity in isopycnic-coordinate ocean models. J. Phys. Oceanogr., 29, 27192729, doi:10.1175/1520-0485(1999)029<2719:IOTIIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tandon, A., and C. Garrett, 1996: On a recent parameterization of mesoscale eddies. J. Phys. Oceanogr., 26, 406416, doi:10.1175/1520-0485(1996)026<0406:OARPOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trossman, D. S., B. K. Arbic, J. G. Richman, S. T. Garner, S. R. Jayne, and A. J. Wallcraft, 2016: Impact of topographic internal lee wave drag on an eddying global ocean model. Ocean Modell., 97, 109128, doi:10.1016/j.ocemod.2015.10.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitham, G., 1970: Two-timing, variational principles and waves. J. Fluid Mech., 44, 373395, doi:10.1017/S002211207000188X.

  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314, doi:10.1146/annurev.fluid.36.050802.122121.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 424 139 15
PDF Downloads 306 98 19