A Closure for Internal Wave–Mean Flow Interaction. Part II: Wave Drag

Carsten Eden Institut für Meereskunde, Universität Hamburg, Hamburg, Germany

Search for other papers by Carsten Eden in
Current site
Google Scholar
PubMed
Close
and
Dirk Olbers Alfred Wegener Institut für Polar- und Meeresforschung, Bremerhaven, and MARUM, Universität Bremen, Bremen, Germany

Search for other papers by Dirk Olbers in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A novel concept for parameterizing internal wave–mean flow interaction in ocean circulation models is extended to an arbitrary two-dimensional flow with vertical shear. The concept is based on the description of the entire wave field by the wave-energy density in physical and wavenumber space and its prognostic computation by the radiative transfer equation integrated in wavenumber space. Energy compartments result for the horizontal direction of wave propagation as additional prognostic model variables, of which only four are taken here for simplicity. The mean flow is interpreted as residual velocities with respect to the wave activity. The effect of wave drag and energy exchange due to the vertical shear of the residual mean flow is then given simply by a vertical flux of momentum. This flux is related to the asymmetries in upward, downward, alongflow, and counterflow wave propagation described by the energy compartments. A numerical implementation in a realistic eddying ocean model shows that the wave drag effect is a significant sink of kinetic energy in the interior ocean.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Carsten Eden, carsten.eden@uni-hamburg.de

Abstract

A novel concept for parameterizing internal wave–mean flow interaction in ocean circulation models is extended to an arbitrary two-dimensional flow with vertical shear. The concept is based on the description of the entire wave field by the wave-energy density in physical and wavenumber space and its prognostic computation by the radiative transfer equation integrated in wavenumber space. Energy compartments result for the horizontal direction of wave propagation as additional prognostic model variables, of which only four are taken here for simplicity. The mean flow is interpreted as residual velocities with respect to the wave activity. The effect of wave drag and energy exchange due to the vertical shear of the residual mean flow is then given simply by a vertical flux of momentum. This flux is related to the asymmetries in upward, downward, alongflow, and counterflow wave propagation described by the energy compartments. A numerical implementation in a realistic eddying ocean model shows that the wave drag effect is a significant sink of kinetic energy in the interior ocean.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Carsten Eden, carsten.eden@uni-hamburg.de
Save
  • Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen–Palm relation and the zonal mean acceleration. J. Atmos. Sci., 33, 20312048, doi:10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyd, J. P., 1976: The noninteraction of waves with the zonally averaged flow on a spherical earth and the interrelationships on eddy fluxes of energy, heat and momentum. J. Atmos. Sci., 33, 22852291, doi:10.1175/1520-0469(1976)033<2285:TNOWWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bühler, O., and M. E. McIntyre, 2005: Wave capture and wave–vortex duality. J. Fluid Mech., 534, 6795, doi:10.1017/S0022112005004374.

  • Cairns, J. L., and G. O. Williams, 1976: Internal wave observations from a midwater float. J. Geophys. Res., 81, 19431950, doi:10.1029/JC081i012p01943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eden, C., 2016: Closing the energy cycle in an ocean model. Ocean Modell., 101, 3042, doi:10.1016/j.ocemod.2016.02.005.

  • Eden, C., and C. W. Böning, 2002: Sources of eddy kinetic energy in the Labrador Sea. J. Phys. Oceanogr., 32, 33463363, doi:10.1175/1520-0485(2002)032<3346:SOEKEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eden, C., and M. Dengler, 2008: Stacked jets in the deep equatorial Atlantic Ocean. J. Geophys. Res., 113, C04003, doi:10.1029/2007JC004298.

  • Eden, C., and D. Olbers, 2014: An energy compartment model for propagation, nonlinear interaction, and dissipation of internal gravity waves. J. Phys. Oceanogr., 44, 20932106, doi:10.1175/JPO-D-13-0224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., and W. Munk, 1972: Space-time scales of internal waves. Geophys. Astrophys. Fluid Dyn., 3, 225264, doi:10.1080/03091927208236082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., 2001: A framework for mesoscale eddy parameterization based on density-weighted averaging at fixed height. J. Phys. Oceanogr., 31, 27972806, doi:10.1175/1520-0485(2001)031<2797:AFFMEP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., 1989: Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 94, 96869698, doi:10.1029/JC094iC07p09686.

  • Henyey, F., J. Wright, and S. Flatté, 1986: Energy and action flow through the internal wave field: An eikonal approach. J. Geophys. Res., 91, 84878495, doi:10.1029/JC091iC07p08487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, D. P., J. R. Maddison, and P. S. Berloff, 2012: A framework for parameterizing eddy potential vorticity fluxes. J. Phys. Oceanogr., 42, 539557, doi:10.1175/JPO-D-11-048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, doi:10.1029/96JC02775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McComas, C. H., 1977: Equilibrium mechanisms within the oceanic internal wave field. J. Phys. Oceanogr., 7, 836845, doi:10.1175/1520-0485(1977)007<0836:EMWTOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McComas, C. H., and P. Müller, 1981: The dynamic balance of internal waves. J. Phys. Oceanogr., 11, 970986, doi:10.1175/1520-0485(1981)011<0970:TDBOIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and P. C. McIntosh, 2001: The temporal–residual–mean velocity. Part II: Isopycnal interpretation and the tracer and momentum equations. J. Phys. Oceanogr., 31, 12221246, doi:10.1175/1520-0485(2001)031<1222:TTRMVP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohammadi-Aragh, M., K. Klingbeil, N. Brüggemann, C. Eden, and H. Burchard, 2015: The impact of advection schemes on restratification due to lateral shear and baroclinic instabilities. Ocean Modell., 94, 112127, doi:10.1016/j.ocemod.2015.07.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muench, J. E., and E. Kunze, 1999: Internal wave interactions with equatorial deep jets. Part I: Momentum-flux divergence. J. Phys. Oceanogr., 29, 14531467, doi:10.1175/1520-0485(1999)029<1453:IWIWED>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muench, J. E., and E. Kunze, 2000: Internal wave interactions with equatorial deep jets. Part II: Acceleration of the jets. J. Phys. Oceanogr., 30, 20992110, doi:10.1175/1520-0485(2000)030<2099:IWIWED>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, P., 1976: On the diffusion of momentum and mass by internal gravity waves. J. Fluid Mech., 77, 789823, doi:10.1017/S0022112076002899.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W., 1981: Internal waves and small-scale processes. Evolution of Physical Oceanography, B. A. Warren and C. Wunsch, Eds., MIT Press, 264–291.

  • Naveira Garabato, A. C., A. G. Nurser, R. B. Scott, and J. A. Goff, 2013: The impact of small-scale topography on the dynamical balance of the ocean. J. Phys. Oceanogr., 43, 647668, doi:10.1175/JPO-D-12-056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olbers, D., 1974: On the energy balance of small-scale internal waves in the deep sea. Hamburger Geophysikalische Einzelschriften, No. 24, 91 pp.

  • Olbers, D., and C. Eden, 2013: A global model for the diapycnal diffusivity induced by internal gravity waves. J. Phys. Oceanogr., 43, 17591779, doi:10.1175/JPO-D-12-0207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olbers, D., and C. Eden, 2017: A closure for internal wave–mean flow interaction. Part I: Energy conversion. J. Phys. Oceanogr., 47, 13891401, doi:10.1175/JPO-D-16-0054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olbers, D., J. Willebrand, and C. Eden, 2012: Ocean Dynamics. Springer, 703 pp.

    • Crossref
    • Export Citation
  • Plumb, R. A., and R. Ferrari, 2005: Transformed Eulerian-mean theory. Part I: Nonquasigeostrophic theory for eddies on a zonal-mean flow. J. Phys. Oceanogr., 35, 165174, doi:10.1175/JPO-2669.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., 2010: Mesoscale eddy-internal wave coupling. Part II: Energetics and results from POLYMODE. J. Phys. Oceanogr., 40, 789801, doi:10.1175/2009JPO4039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomsen, S., C. Eden, and L. Czeschel, 2014: Stability analysis of the Labrador Current. J. Phys. Oceanogr., 44, 445463, doi:10.1175/JPO-D-13-0121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trossman, D. S., B. K. Arbic, J. G. Richman, S. T. Garner, S. R. Jayne, and A. J. Wallcraft, 2016: Impact of topographic internal lee wave drag on an eddying global ocean model. Ocean Modell., 97, 109128, doi:10.1016/j.ocemod.2015.10.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Worthington, L., 1958: The 18° water in the Sargasso Sea. Deep-Sea Res., 5, 297305.

  • Young, W. R., 2012: An exact thickness-weighted average formulation of the Boussinesq equations. J. Phys. Oceanogr., 42, 692707, doi:10.1175/JPO-D-11-0102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 288 101 9
PDF Downloads 195 54 6