Internal-Wave-Driven Mixing: Global Geography and Budgets

Eric Kunze NorthWest Research Associates, Redmond, Washington

Search for other papers by Eric Kunze in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Internal-wave-driven dissipation rates ε and diapycnal diffusivities K are inferred globally using a finescale parameterization based on vertical strain applied to ~30 000 hydrographic casts. Global dissipations are 2.0 ± 0.6 TW, consistent with internal wave power sources of 2.1 ± 0.7 TW from tides and wind. Vertically integrated dissipation rates vary by three to four orders of magnitude with elevated values over abrupt topography in the western Indian and Pacific as well as midocean slow spreading ridges, consistent with internal tide sources. But dependence on bottom forcing is much weaker than linear wave generation theory, pointing to horizontal dispersion by internal waves and relatively little local dissipation when forcing is strong. Stratified turbulent bottom boundary layer thickness variability is not consistent with OGCM parameterizations of tidal mixing. Average diffusivities K = (0.3–0.4) × 10−4 m2 s−1 depend only weakly on depth, indicating that ε = KN2/γ scales as N2 such that the bulk of the dissipation is in the pycnocline and less than 0.08-TW dissipation below 2000-m depth. Average diffusivities K approach 10−4 m2 s−1 in the bottom 500 meters above bottom (mab) in height above bottom coordinates with a 2000-m e-folding scale. Average dissipation rates ε are 10−9 W kg−1 within 500 mab then diminish to background deep values of 0.15 × 10−9 W kg−1 by 1000 mab. No incontrovertible support is found for high dissipation rates in Antarctic Circumpolar Currents or parametric subharmonic instability being a significant pathway to elevated dissipation rates for semidiurnal or diurnal internal tides equatorward of 28° and 14° latitudes, respectively, although elevated K is found about 30° latitude in the North and South Pacific.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Eric Kunze, kunze@nwra.com

Abstract

Internal-wave-driven dissipation rates ε and diapycnal diffusivities K are inferred globally using a finescale parameterization based on vertical strain applied to ~30 000 hydrographic casts. Global dissipations are 2.0 ± 0.6 TW, consistent with internal wave power sources of 2.1 ± 0.7 TW from tides and wind. Vertically integrated dissipation rates vary by three to four orders of magnitude with elevated values over abrupt topography in the western Indian and Pacific as well as midocean slow spreading ridges, consistent with internal tide sources. But dependence on bottom forcing is much weaker than linear wave generation theory, pointing to horizontal dispersion by internal waves and relatively little local dissipation when forcing is strong. Stratified turbulent bottom boundary layer thickness variability is not consistent with OGCM parameterizations of tidal mixing. Average diffusivities K = (0.3–0.4) × 10−4 m2 s−1 depend only weakly on depth, indicating that ε = KN2/γ scales as N2 such that the bulk of the dissipation is in the pycnocline and less than 0.08-TW dissipation below 2000-m depth. Average diffusivities K approach 10−4 m2 s−1 in the bottom 500 meters above bottom (mab) in height above bottom coordinates with a 2000-m e-folding scale. Average dissipation rates ε are 10−9 W kg−1 within 500 mab then diminish to background deep values of 0.15 × 10−9 W kg−1 by 1000 mab. No incontrovertible support is found for high dissipation rates in Antarctic Circumpolar Currents or parametric subharmonic instability being a significant pathway to elevated dissipation rates for semidiurnal or diurnal internal tides equatorward of 28° and 14° latitudes, respectively, although elevated K is found about 30° latitude in the North and South Pacific.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Eric Kunze, kunze@nwra.com
Save
  • Alford, M. H., 2001: Internal swell generation: The spatial distribution of energy flux from wind to mixed-layer near-inertial motions. J. Phys. Oceanogr., 31, 23592368, doi:10.1175/1520-0485(2001)031<2359:ISGTSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., J. A. MacKinnon, Z.-X. Zhao, R. Pinkel, J. Klymak, and T. Peacock, 2007: Internal waves across the Pacific. Geophys. Res. Lett., 34, L24601, doi:10.1029/2007GL031566.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and Coauthors, 2011: Energy flux and dissipation in Luzon Strait: Two tales of two ridges. J. Phys. Oceanogr., 41, 22112222, doi:10.1175/JPO-D-11-073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., J. B. Girton, G. Voet, G. S. Carter, J. B. Mickett, and J. M. Klymak, 2013: Turbulent mixing and hydraulic control of abyssal water in the Samoan Passage. Geophys. Res. Lett., 40, 46684674, doi:10.1002/grl.50684.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Althaus, A. M., E. Kunze, and T. B. Sanford, 2003: Internal tide radiation from Mendocino Escarpment. J. Phys. Oceanogr., 33, 15101527, doi:10.1175/1520-0485(2003)033<1510:ITRFME>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, T. H., 1975: Topographically-generated internal waves in the open ocean. J. Geophys. Res., 80, 320327, doi:10.1029/JC080i003p00320.

  • Cairns, J. L., and G. O. Williams, 1976: Internal-wave observations from a midwater float, 2. J. Geophys. Res., 81, 19431950, doi:10.1029/JC081i012p01943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carter, G. S., and M. C. Gregg, 2002: Intense variable mixing near the head of Monterey Submarine Canyon. J. Phys. Oceanogr., 32, 31453165, doi:10.1175/1520-0485(2002)032<3145:IVMNTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carter, G. S., and M. C. Gregg, 2006: Persistent near-diurnal internal waves observed above a site of M2 barotropic-to-baroclinic conversion. J. Phys. Oceanogr., 36, 11361147, doi:10.1175/JPO2884.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carter, G. S., M. C. Gregg, and R.-C. Lien, 2005: Internal waves, solitary-like waves and mixing on the Monterey Bay shelf. Cont. Shelf Res., 25, 14991520, doi:10.1016/j.csr.2005.04.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Damerell, G. M., K. J. Heywood, D. P. Stevens, and A. C. Naveira Garabato, 2012: Temporal variability of diapycnal mixing in Shag Rocks Passage. J. Phys. Oceanogr., 42, 370385, doi:10.1175/2011JPO4573.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., and J. H. Morison, 1992: Internal waves and mixing in the Arctic Ocean. Deep-Sea Res., 39A, S459S484, doi:10.1016/S0198-0149(06)80016-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., and R.-C. Lien, 2000: The wave–turbulence transition for stratified flows. J. Phys. Oceanogr., 30, 16691678, doi:10.1175/1520-0485(2000)030<1669:TWTTFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Decloedt, T., and D. S. Luther, 2010: On a simple empirical parameterization of topography-catalyzed diapycnal mixing in the abyssal ocean. J. Phys. Oceanogr., 40, 487508, doi:10.1175/2009JPO4275.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and R. Ray, 2001: Estimates of M2 tidal energy dissipation from TOPEX/Poseidon altimeter data. J. Geophys. Res., 106, 22 47522 502, doi:10.1029/2000JC000699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferron, B., H. Mercier, K. Speer, A. Gargett, and K. Polzin, 1998: Mixing in the Romanche Fracture Zone. J. Phys. Oceanogr., 28, 19291945, doi:10.1175/1520-0485(1998)028<1929:MITRFZ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedrich, T., A. Timmermann, T. Decloedt, D. S. Luther, and A. Mouchet, 2011: The effect of topography-enhanced diapynal mixing on ocean and atmospheric circulation and marine biogeochemistry. Ocean Modell., 39, 262274, doi:10.1016/j.ocemod.2011.04.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., 1984: Gravity wave saturation in the middle atmosphere: A review of theory and observations. Rev. Geophys., 22, 275308, doi:10.1029/RG022i003p00275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Furuichi, N., T. Hibiya, and Y. Niwa, 2008: Model-predicted distribution of wind-induced internal wave energy in the world’s oceans. J. Geophys. Res., 113, C09034, doi:10.1029/2008JC004768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., 1990: Do we really know how to scale the turbulent kinetic energy dissipation rate ε due to breaking of oceanic internal waves? J. Geophys. Res., 95, 15 97115 974, doi:10.1029/JC095iC09p15971.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., 1989: Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 94, 96869698, doi:10.1029/JC094iC07p09686.

  • Gregg, M. C., and T. B. Sanford, 1987: Shear and turbulence in thermohaline staircases. Deep-Sea Res., 34, 16891696, doi:10.1016/0198-0149(87)90017-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., and T. B. Sanford, 1988: The dependence of turbulent dissipation on stratification in a diffusively stable thermocline. J. Geophys. Res., 93, 12 38112 392, doi:10.1029/JC093iC10p12381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., and E. Kunze, 1991: Internal wave shear and strain in Santa Monica Basin. J. Geophys. Res., 96, 16 70916 719, doi:10.1029/91JC01385.

  • Gregg, M. C., T. B. Sanford, and D. P. Winkel, 2003: Reduced mixing from the breaking of internal waves in equatorial ocean waters. Nature, 422, 513515, doi:10.1038/nature01507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henyey, F. S., 1991: Scaling of internal wave predictions for ε. Dynamics of Internal Gravity Waves in the Ocean: Proc. ‘Aha Huliko’a Hawaiian Winter Workshop, Honolulu, HI, University of Hawai‘i at Mānoa, 233–236.

  • Henyey, F. S., J. Wright, and S. M. Flatte, 1986: Energy and action flow through the internal wave field: An eikonal approach. J. Geophys. Res., 91, 84878495, doi:10.1029/JC091iC07p08487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hibiya, T., M. Nagasawa, and Y. Niwa, 1999: Model-predicted distribution of internal wave energy for diapycnal mixing processes in the deep waters of the North Pacific. Dynamics of Oceanic Internal Gravity Waves II: Proc.‘Aha Huliko’a Hawaiian Winter Workshop, Honolulu, HI, University of Hawai‘i at Mānoa, 205–213.

  • Hibiya, T., M. Nagasawa, and Y. Niwa, 2006: Global mapping of diapycnal diffusivity in the deep ocean based on the results of expendable current profiler (XCP) surveys. Geophys. Res. Lett., 33, L03611, doi:10.1029/2005GL025218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huussen, T., A. C. Naveira Garabato, H. L. Bryden, and E. L. McDogangh, 2012: Is the Indian Ocean MOC driven by breaking internal waves? J. Geophys. Res., 117, C08024, doi:10.1029/2012JC008236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Itsweire, E. C., K. N. Helland, and C. W. van Atta, 1986: The evolution of grid-generated turbulence in a stably-stratified fluid. J. Fluid Mech., 162, 299338, doi:10.1017/S0022112086002069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., 2009: The impact of abyssal mixing parameterizations in an ocean general circulation model. J. Phys. Oceanogr., 39, 17561775, doi:10.1175/2009JPO4085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and L. C. St. Laurent, 2001: Parameterizing tidal dissipation over rough topography. Geophys. Res. Lett., 28, 811814, doi:10.1029/2000GL012044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jochum, M., 2009: Impact of latitudinal variations in vertical diffusivity on climate simulations. J. Geophys. Res., 114, C01010, doi:10.1029/2008JC005030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kilbourne, B. F., 2015: On the topic of ocean variability near the Coriolis frequency: Generation mechanisms, observations and implications for interior mixing. Ph.D. thesis, University of Washington, 124 pp.

  • Klymak, J. M., and Coauthors, 2006: An estimate of tidal energy lost to turbulence at the Hawaiian Ridge. J. Phys. Oceanogr., 36, 11481164, doi:10.1175/JPO2885.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., R. Pinkel, and L. Rainville, 2008: Direct breaking of the internal tide near topography: Kaena Ridge, Hawaii. J. Phys. Oceanogr., 38, 380399, doi:10.1175/2007JPO3728.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., S. Legg, and R. Pinkel, 2010: A simple parameterization of turbulent tidal mixing near supercritical topography. J. Phys. Oceanogr., 40, 20592074, doi:10.1175/2010JPO4396.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., 2003: A review of oceanic salt-fingering theory. Prog. Oceanogr., 56, 399417, doi:10.1016/S0079-6611(03)00027-2.

  • Kunze, E., and T. B. Sanford, 1996: Abyssal mixing: Where it isn’t. J. Phys. Oceanogr., 26, 22862296, doi:10.1175/1520-0485(1996)026<2286:AMWIIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., and J. M. Toole, 1997: Tidally driven vorticity, diurnal shear, and turbulence atop Fieberling Seamount. J. Phys. Oceanogr., 27, 26632693, doi:10.1175/1520-0485(1997)027<2663:TDVDSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., A. J. Williams III, and M. G. Briscoe, 1990: Observations of shear and vertical stability from a neutrally buoyant float. J. Geophys. Res., 95, 18 12718 142, doi:10.1029/JC095iC10p18127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., M. A. Kennelly, and T. B. Sanford, 1992: The depth dependence of shear finestructure off Point Arena and near Pioneer Seamount. J. Phys. Oceanogr., 22, 2941, doi:10.1175/1520-0485-22.1.29.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., E. Firing, J. M. Hummon, T. K. Chereskin, and A. M. Thurnherr, 2006: Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J. Phys. Oceanogr., 36, 15531576, doi:10.1175/JPO2926.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., C. MacKay, E. E. McPhee-Shaw, K. Morrice, J. B. Girton, and S. R. Terker, 2012: Turbulent mixing and exchange with interior waters on sloping boundaries. J. Phys. Oceanogr., 42, 910927, doi:10.1175/JPO-D-11-075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lauderdale, J. M., S. Bacon, A. C. Naveira Garabato, and N. P. Holliday, 2008: Intensified turbulent mixing in the boundary current system of southern Greenland. Geophys. Res. Lett., 35, L04611, doi:10.1029/2007GL032785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., and A. J. Watson, 1991: The Santa Monica Basin tracer experiment: A study of diapycnal and isopycnal mixing. J. Geophys. Res., 96, 86958718, doi:10.1029/91JC00102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, C. M., E. Kunze, T. B. Sanford, J. D. Nash, M. A. Merrifield, and P. E. Holloway, 2006: Internal tides and turbulence along the 3000-m isobath of the Hawaiian Ridge. J. Phys. Oceanogr., 36, 11651183, doi:10.1175/JPO2886.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lueck, R. G., and T. D. Mudge, 1997: Topographically induced mixing around a shallow seamount. Science, 276, 18311833, doi:10.1126/science.276.5320.1831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and K. Speer, 2003: Large-scale vertical and horizontal circulation in the North Atlantic Ocean. J. Phys. Oceanogr., 33, 19021920, doi:10.1175/1520-0485(2003)033<1902:LVAHCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., and M. C. Gregg, 2003: Mixing on the late-summer New England shelf—Solibores, shear, and stratification. J. Phys. Oceanogr., 33, 14761492, doi:10.1175/1520-0485(2003)033<1476:MOTLNE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., and K. B. Winters, 2005: Subtropical catastrophe: Significant loss of low-mode tidal energy at 28.9°. Geophys. Res. Lett., 32, L15605, doi:10.1029/2005GL023376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., T. M. S. Johnston, and R. Pinkel, 2008: Strong transport and mixing of deep water through the Southwest Indian Ridge. Nat. Geosci., 1, 755758, doi:10.1038/ngeo340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., M. H. Alford, R. Pinkel, J. Klymak, and Z.-X. Zhao, 2013a: The latitudinal dependence of shear and mixing in the Pacific transiting the critical latitude for PSI. J. Phys. Oceanogr., 43, 316, doi:10.1175/JPO-D-11-0107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., M. H. Alford, O. Sun, R. Pinkel, Z.-X. Zhao, and J. Klymak, 2013b: Parametric subharmonic instability of the internal tide at 29°N. J. Phys. Oceanogr., 43, 1728, doi:10.1175/JPO-D-11-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mauritzen, C., K. L. Polzin, M. S. McCartney, R. C. Millard, and D. E. West-Mack, 2002: Evidence in hydrography and density finestructure for enhanced vertical mixing over the Mid-Atlantic Ridge. J. Geophys. Res., 107, 3147, doi:10.1029/2001JC001114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McComas, C. H., and P. Müller, 1981: The dynamic balance of internal waves. J. Phys. Oceanogr., 11, 970986, doi:10.1175/1520-0485(1981)011<0970:TDBOIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melet, A., R. Hallberg, S. Legg, and K. Polzin, 2013: Sensitivity of the ocean state to the distribution of internal-tide-driven mixing. J. Phys. Oceanogr., 43, 602615, doi:10.1175/JPO-D-12-055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melet, A., R. Hallberg, S. Legg, and M. Nikurashin, 2014: Sensitivity of the ocean state to lee-wave-driven mixing. J. Phys. Oceanogr., 44, 900921, doi:10.1175/JPO-D-13-072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melet, A., S. Legg, and R. Hallberg, 2016: Climatic impacts of parameterized local and remote tidal mixing. J. Climate, 29, 34733500, doi:10.1175/JCLI-D-15-0153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J. N., 1996: Efficiency of mixing in the main thermocline. J. Geophys. Res., 101, 12 05712 069, doi:10.1029/96JC00508.

  • Munk, W., 1966: Abyssal recipes. Deep-Sea Res. Oceanogr. Abstr., 13, 707730, doi:10.1016/0011-7471(66)90602-4.

  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, doi:10.1016/S0967-0637(98)00070-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. D., E. Kunze, J. M. Toole, and R. W. Schmitt, 2004: Internal tide reflection and turbulent mixing on the continental slope. J. Phys. Oceanogr., 34, 11171134, doi:10.1175/1520-0485(2004)034<1117:ITRATM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., K. L. Polzin, B. A. King, K. J. Heywood, and M. Visbeck, 2004: Widespread intense turbulent mixing in the Southern Ocean. Science, 303, 210213, doi:10.1126/science.1090929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2011: Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean. Geophys. Res. Lett., 38, L08610, doi:10.1029/2011GL046576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nycander, J., 2005: Generation of internal waves in the deep ocean by tides. J. Geophys. Res., 110, C10028, doi:10.1029/2004JC002487.

  • Oakey, N. S., 1982: Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements. J. Phys. Oceanogr., 12, 256271, doi:10.1175/1520-0485(1982)012<0256:DOTROD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oka, A., and Y. Niwa, 2013: Pacific deep circulation and ventilation controlled by tidal mixing away from the sea bottom. Nat. Commun., 4, 2419, doi:10.1038/ncomms3419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olbers, D., and C. Eden, 2013: A global model for the diapycnal diffusivity induced by internal gravity waves. J. Phys. Oceanogr., 43, 17591779, doi:10.1175/JPO-D-12-0207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 8389, doi:10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinkel, R., 2014: Vortical and internal-wave shear and strain. J. Phys. Oceanogr., 44, 20702092, doi:10.1175/JPO-D-13-090.1.

  • Plueddemann, A. J., and J. T. Farrar, 2006: Observations and models of the energy flux from the wind to mixed-layer inertial currents. Deep-Sea Res. II, 53, 530, doi:10.1016/j.dsr2.2005.10.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K., 2004: Idealized solutions for the energy balance of the finescale internal wave field. J. Phys. Oceanogr., 34, 231246, doi:10.1175/1520-0485(2004)034<0231:ISFTEB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K., and E. Firing, 1997: Estimates of diapycnal mixing using LADCP and CTD data from I8S. International WOCE Newsletter, No. 29, WOCE International Project Office, Southampton, United Kingdom, 39–42.

  • Polzin, K., J. M. Toole, and R. W. Schmitt, 1995: Finescale parameterization of turbulent dissipation. J. Phys. Oceanogr., 25, 306328, doi:10.1175/1520-0485(1995)025<0306:FPOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K., J. M. Toole, J. R. Ledwell, and R. W. Schmitt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 9396, doi:10.1126/science.276.5309.93.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K., E. Kunze, J. M. Toole, and R. W. Schmitt, 2003: The partition of finescale energy into internal waves and geostrophic motions. J. Phys. Oceanogr., 33, 234248, doi:10.1175/1520-0485(2003)033<0234:TPOFEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K., A. C. Naviera Garabato, T. N. Huussen, B. M. Sloyan, and S. Waterman, 2014: Finescale parameterizations of turbulent dissipation. J. Geophys. Res. Oceans, 119, 13831419, doi:10.1002/2013JC008979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and G. T. Mitchum, 1997: Surface manifestation of internal tides in the deep ocean: Observations from altimetry and island gauges. Prog. Oceanogr., 40, 135162, doi:10.1016/S0079-6611(97)00025-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rimac, A., J. S. von Storch, C. Eden, and H. Haak, 2013: The influence of high-resolution wind-stress field on the power input to near-inertial motions in the ocean. Geophys. Res. Lett., 40, 48824886, doi:10.1002/grl.50929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saenko, O. A., and W. J. Merryfield, 2005: On the effect of topographically enhanced mixing on the global ocean circulation. J. Phys. Oceanogr., 35, 826834, doi:10.1175/JPO2722.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmitt, R. W., 2003: Observational and laboratory insights into salt finger convection. Prog. Oceanogr., 56, 419433, doi:10.1016/S0079-6611(03)00033-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, R. B., J. A. Goff, A. C. Naveira Garabato, and A. J. G. Nurser, 2011: Global rate and spectral characteristics of internal gravity wave generation by geostrophic flow over topography. J. Geophys. Res., 116, C09029, doi:10.1029/2011JC007005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheen, K. L., and Coauthors, 2013: Rates and mechanisms of turbulent dissipation and mixing in the Southern Ocean: Results from the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). J. Geophys. Res. Oceans, 118, 27742792, doi:10.1002/jgrc.20217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., 2008: Spectral modification and geographic redistribution of the semidiurnal internal tide. Ocean Modell., 21, 126138, doi:10.1016/j.ocemod.2008.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., R. W. Hallberg, and B. K. Arbic, 2004: Internal wave generation in a global baroclinic tide model. Deep-Sea Res., 51, 30433068, doi:10.1016/j.dsr2.2004.09.015.

    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., 2005: Spatial variability of mixing in the Southern Ocean. Geophys. Res. Lett., 32, L18603, doi:10.1029/2005GL023568.

  • Smith, W. H. F., and D. T. Sandwell, 1997: Global seafloor topography from satellite altimetry and ship depth soundings. Science, 277, 19561962, doi:10.1126/science.277.5334.1956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. S., and R. W. Schmitt, 1999: The contributions of salt fingers to vertical mixing in the North Atlantic Tracer Release Experiment. J. Phys. Oceanogr., 29, 14041424, doi:10.1175/1520-0485(1999)029<1404:TCOSFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. S., and C. Garrett, 2002: The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr., 32, 28822899, doi:10.1175/1520-0485(2002)032<2882:TROITI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. S., J. M. Toole, and R. W. Schmitt, 2001: Buoyancy forcing of turbulence above rough topography in the abyssal Brazil Basin. J. Phys. Oceanogr., 31, 34763495, doi:10.1175/1520-0485(2001)031<3476:BFBTAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. S., H. Simmons, and S. R. Jayne, 2002: Estimating tidally driven mixing in the deep ocean. Geophys. Res. Lett., 29, 2106, doi:10.1029/2002GL015633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. S., A. C. Naveira Garbato, J. R. Ledwell, A. M. Thurnherr, J. M. Toole, and A. J. Watson, 2012: Turbulence and diapycnal mixing in Drake Passage. J. Phys. Oceanogr., 42, 21432152, doi:10.1175/JPO-D-12-027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stöber, U., M. Walter, C. Mertens, and M. Rhein, 2008: Mixing estimates from hydrographic measurements in the deep western boundary current of the North Atlantic. Deep-Sea Res. I, 55, 721736, doi:10.1016/j.dsr.2008.03.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, O. M., and R. Pinkel, 2013: Subharmonic energy transfer from the semidiurnal internal tide to near-diurnal motions over Kaena Ridge, Hawaii. J. Phys. Oceanogr., 43, 766789, doi:10.1175/JPO-D-12-0141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurnherr, A. M., E. Kunze, L. C. St. Laurent, K. J. Richards, and J. M. Toole, 2015: Vertical kinetic energy and turbulent dissipation in the ocean. Geophys. Res. Lett., 42, 76397647, doi:10.1002/2015GL065043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toole, J. M., K. L. Polzin, and R. W. Schmitt, 1994: Estimates of diapycnal mixing in the abyssal ocean. Science, 264, 11201123, doi:10.1126/science.264.5162.1120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toole, J. M., R. W. Schmitt, K. L. Polzin, and E. Kunze, 1997: Near-boundary mixing above the flanks of a midlatitude seamount. J. Geophys. Res., 102, 947959, doi:10.1029/96JC03160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walter, M., C. Mertens, and M. Rhein, 2005: Mixing estimates from a large-scale hydrographic survey in the North Atlantic. Geophys. Res. Lett., 32, L13605, doi:10.1029/2005GL022471.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterhouse, A. F., and Coauthors, 2014: Global patterns of mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr., 44, 18541872, doi:10.1175/JPO-D-13-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterman, S., A. C. Naveira Garabato, and K. L. Polzin, 2013: Internal waves and turbulence in the Antarctic Circumpolar Current. J. Phys. Oceanogr., 43, 259282, doi:10.1175/JPO-D-11-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterman, S., K. L. Polzin, A. C. Naveira Garabato, K. L. Sheen, and A. Forryan, 2014: Suppression of internal wave breaking in the Antarctic Circumpolar Current near topography. J. Phys. Oceanogr., 44, 14661492, doi:10.1175/JPO-D-12-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., L. D. Talley, and J. A. MacKinnon, 2012: Spatial and temporal variability of global ocean mixing inferred from Argo profiles. Geophys. Res. Lett., 39, L18612, doi:10.1029/2012GL053196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., J. A. MacKinnon, L. D. Talley, and A. F. Waterhouse, 2015: Estimating the mean diapycnal mixing using a finescale strain parameterization. J. Phys. Oceanogr., 45, 11741188, doi:10.1175/JPO-D-14-0167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijesekera, H., L. Padman, T. Dillon, M. Levine, C. Paulson, and R. Pinkel, 1993: The application of internal-wave dissipation models to a region of strong mixing. J. Phys. Oceanogr., 23, 269286, doi:10.1175/1520-0485(1993)023<0269:TAOIWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winkel, D. P., M. C. Gregg, and T. B. Sanford, 2002: Patterns of shear and turbulence across the Florida Current. J. Phys. Oceanogr., 32, 32693285, doi:10.1175/1520-0485(2002)032<3269:POSATA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, C. J., R. B. Scott, P. Ailliot, and D. Furnival, 2014: Lee-wave generation rates in the deep ocean. Geophys. Res. Lett., 41, 24342440, doi:10.1002/2013GL059087.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., Z. Jing, S. Riser, and M. Visbeck, 2011: Seasonal and spatial variations of Southern Ocean diapycnal mixing from Argo profiling floats. Nat. Geosci., 4, 363366, doi:10.1038/ngeo1156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314, doi:10.1146/annurev.fluid.36.050802.122121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Z.-X., M. H. Alford, J. B. Girton, L. Rainville, and H. L. Simmons, 2016: Global observations of open-ocean mode-1 M2 internal tides. J. Phys. Oceanogr., 46, 16571684, doi:10.1175/JPO-D-15-0105.1.

    • Crossref