The North Atlantic Eddy Heat Transport and Its Relation with the Vertical Tilting of the Gulf Stream Axis

A. M. Treguier Laboratoire d’Océanographie Physique et Spatiale, CNRS-IFREMER-IRD-UBO, IUEM, Plouzane, France

Search for other papers by A. M. Treguier in
Current site
Google Scholar
PubMed
Close
,
C. Lique Laboratoire d’Océanographie Physique et Spatiale, CNRS-IFREMER-IRD-UBO, IUEM, Plouzane, France

Search for other papers by C. Lique in
Current site
Google Scholar
PubMed
Close
,
J. Deshayes Sorbonne Universités (UPMC)-CNRS-IRD-MNHN, LOCEAN Laboratory, Paris, France

Search for other papers by J. Deshayes in
Current site
Google Scholar
PubMed
Close
, and
J. M. Molines CNRS-University Grenoble Alpes, Laboratoire de Glaciologie et Géophysique de L’environnement, Grenoble, France

Search for other papers by J. M. Molines in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Correlations between temperature and velocity fluctuations are a significant contribution to the North Atlantic meridional heat transport, especially at the northern boundary of the subtropical gyre. In satellite observations and in a numerical model at ⅞° resolution, a localized pattern of positive eddy heat flux is found northwest of the Gulf Stream, downstream of its separation at Cape Hatteras. It is confined to the upper 500 m. A simple kinematic model of a meandering jet can explain the surface eddy flux, taking into account a spatial shift between the maximum velocity of the jet and the maximum cross-jet temperature gradient. In the Gulf Stream such a spatial shift results from the nonlinear temperature profile and the vertical tilting of the velocity profile with depth. The numerical model suggests that the meandering of the Gulf Stream could account, at least in part, for the large eddy heat transport (of order 0.3 PW) near 36°N in the North Atlantic and for its compensation by the mean flow.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: A. M. Treguier, treguier@ifremer.fr

This article is included in the In Honor of Bach-Lien Hua: Ocean Scale Interactions special collection.

Abstract

Correlations between temperature and velocity fluctuations are a significant contribution to the North Atlantic meridional heat transport, especially at the northern boundary of the subtropical gyre. In satellite observations and in a numerical model at ⅞° resolution, a localized pattern of positive eddy heat flux is found northwest of the Gulf Stream, downstream of its separation at Cape Hatteras. It is confined to the upper 500 m. A simple kinematic model of a meandering jet can explain the surface eddy flux, taking into account a spatial shift between the maximum velocity of the jet and the maximum cross-jet temperature gradient. In the Gulf Stream such a spatial shift results from the nonlinear temperature profile and the vertical tilting of the velocity profile with depth. The numerical model suggests that the meandering of the Gulf Stream could account, at least in part, for the large eddy heat transport (of order 0.3 PW) near 36°N in the North Atlantic and for its compensation by the mean flow.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: A. M. Treguier, treguier@ifremer.fr

This article is included in the In Honor of Bach-Lien Hua: Ocean Scale Interactions special collection.

Save
  • Barnier, B., L. Siefridt, and P. Marchesiello, 1995: Thermal forcing for a global ocean circulation model using a three-year climatology of ECMWF analyses. J. Mar. Syst., 6, 363380, doi:10.1016/0924-7963(94)00034-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnier, B., and Coauthors, 2014: DRAKKAR: Developing high resolution ocean components for European Earth system models. CLIVAR Exchanges, Vol. 65, International CLIVAR Project Office, Southampton, United Kingdom, 18–21.

  • Barrier, N., J. Deshayes, A. Treguier, and C. Cassou, 2015: Heat budget in the North Atlantic Subpolar Gyre: Impacts of atmospheric weather regimes on the 1995 warming event. Prog. Oceanogr., 130, 7590, doi:10.1016/j.pocean.2014.10.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brodeau, L., B. Barnier, A. Treguier, T. Penduff, and S. Gulev, 2010: An ERA40-based atmospheric forcing for global ocean circulation models. Ocean Modell., 31, 88104, doi:10.1016/j.ocemod.2009.10.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, K., 1986: Poleward buoyancy transport in the ocean and mesoscale eddies. J. Phys. Oceanogr., 16, 927933, doi:10.1175/1520-0485(1986)016<0927:PBTITO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, M., 1985: An eddy resolving model of the ventilated thermocline. J. Phys. Oceanogr., 15, 13121324, doi:10.1175/1520-0485(1985)015<1312:AERNMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2015: Topographic vorticity generation, submesoscale instability, and vortex street formation in the Gulf Stream. Geophys. Res. Lett., 42, 40544062, doi:10.1002/2015GL063731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, N., B. Barnier, T. Penduff, and J. Molines, 2004: Interannual variation of Gulf Stream heat transport in a numerical model forced by reanalysis data. Climate Dyn., 23, 341351, doi:10.1007/s00382-004-0449-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hausmann, U., and A. Czaja, 2012: The observed signature of mesoscale eddies in sea surface temperature and the associated heat transport. Deep-Sea Res. I, 70, 6072, doi:10.1016/j.dsr.2012.08.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hecht, M., and R. Smith, 2008: Towards a physical understanding of the North Atlantic: A review of model studies. Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 213–240.

    • Crossref
    • Export Citation
  • Jayne, S., and J. Marotzke, 2002: The oceanic eddy heat transport. J. Phys. Oceanogr., 32, 33283345, doi:10.1175/1520-0485(2002)032<3328:TOEHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, W. E., and Coauthors, 2011: Continuous, array-based estimates of Atlantic Ocean heat transport at 26.5°N. J. Climate, 24, 24292449, doi:10.1175/2010JCLI3997.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, D., and E. N. Curchitser, 2015: Energetics of eddy–mean flow interactions in the Gulf Stream region. J. Phys. Oceanogr., 45, 11031120, doi:10.1175/JPO-D-14-0200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, H., 1956: Forced and free meridional circulations in the atmosphere. J. Meteor., 13, 561568, doi:10.1175/1520-0469(1956)013<0561:FAFMCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364, doi:10.1007/s00382-008-0441-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madec, G., 2008: NEMO ocean engine. Institut Pierre-Simon Laplace Note du Pole de Modélisation 27, 300 pp.

  • Maze, G., J. Deshayes, J. Marshall, A. Treguier, A. Chronis, and L. Vollner, 2013: Surface vertical PV fluxes and subtropical mode water formation in an eddy-resolving numerical simulation. Deep-Sea Res. II, 91, 128138, doi:10.1016/j.dsr2.2013.02.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCarthy, G., and Coauthors, 2015: Measuring the Atlantic meridional overturning circulation at 26°N. Prog. Oceanogr., 130, 91111, doi:10.1016/j.pocean.2014.10.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1979: Geophysical Fluid Dynamics. Springer-Verlag, 624 pp.

    • Crossref
    • Export Citation
  • Ratsimandresy, A., and J. Pelegri, 2005: Vertical alignment of the Gulf Stream. Tellus, 57A, 691700, doi:10.1111/j.1600-0870.2005.00115.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. Smith, C. Liu, D. Chelton, K. Casey, and M. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, doi:10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossby, T., 1987: On the energetics of the Gulf Stream at 73W. J. Mar. Res., 45, 5982, doi:10.1357/002224087788400918.

  • Serazin, G., T. Penduff, S. Gregorio, B. Barnier, J. Molines, and L. Terray, 2015: Intrinsic variability of sea level from global 1/12° ocean simulations: Spatiotemporal scales. J. Climate, 28, 42794292, doi:10.1175/JCLI-D-14-00554.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. D., M. E. Maltrud, F. O. Bryan, and M. Hecht, 2000: Simulation of the North Atlantic Ocean at 1/10°. J. Phys. Oceanogr., 30, 15321561, doi:10.1175/1520-0485(2000)030<1532:NSOTNA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammer, D., 1998: On eddy characteristics, eddy transports, and mean flow properties. J. Phys. Oceanogr., 28, 727739, doi:10.1175/1520-0485(1998)028<0727:OECETA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toole, J. M., R. G. Curry, T. M. Joyce, M. McCartney, and B. Peña-Molino, 2011: Transport of the North Atlantic deep western boundary current about 39°N, 70°W: 2004–2008. Deep-Sea Res. II, 58, 17681780, doi:10.1016/j.dsr2.2010.10.058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Treguier, A. M., J. Deshayes, C. Lique, R. Dussin, and J. M. Molines, 2012: Eddy contributions to the meridional transport of salt in the North Atlantic. J. Geophys. Res., 117, C05010, doi:10.1029/2012JC007927.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Treguier, A. M., and Coauthors, 2014: Meridional transport of salt in the global ocean from an eddy-resolving model. Ocean Sci., 10, 243255, doi:10.5194/os-10-243-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Volkov, D., T. Lee, and L. Fu, 2008: Eddy-induced meridional heat transport in the ocean. Geophys. Res. Lett., 35, L20601, doi:10.1029/2008GL035490.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watts, D., and W. E. Johns, 1982: Gulf Stream meanders: Observations on propagation and growth. J. Geophys. Res., 87, 94679476, doi:10.1029/JC087iC12p09467.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, X., and R. Greatbatch, 2006: Inferring the eddy-induced diffusivity for heat in the surface mixed layer using satellite data. Geophys. Res. Lett., 33, L24607, doi:10.1029/2006GL027875.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1046 604 106
PDF Downloads 320 97 7