Anticyclonic Eddy Sheddings from Kuroshio Loop and the Accompanying Cyclonic Eddy in the Northeastern South China Sea

Zhiwei Zhang Physical Oceanography Laboratory/CIMST, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Zhiwei Zhang in
Current site
Google Scholar
PubMed
Close
,
Wei Zhao Physical Oceanography Laboratory/CIMST, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Wei Zhao in
Current site
Google Scholar
PubMed
Close
,
Bo Qiu Department of Oceanography, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Bo Qiu in
Current site
Google Scholar
PubMed
Close
, and
Jiwei Tian Physical Oceanography Laboratory/CIMST, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Jiwei Tian in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Sheddings of Kuroshio Loop Current (KLC) eddies in the northeastern South China Sea (SCS) are investigated using mooring arrays, multiple satellite data, and data-assimilative HYCOM products. Based on altimeter sea surface heights between 1992 and 2014, a total of 19 prominent KLC eddy shedding (KLCES) events were identified, among which four events were confirmed by the concurrent moored and satellite observations. Compared to the leaping behavior of Kuroshio, KLCES is a relatively short-duration phenomenon that primarily occurs in boreal autumn and winter. The KLC and its shedding anticyclonic eddy (AE) trap a large amount of Pacific water with high temperature–salinity and low chlorophyll concentration in the upper layer. The corresponding annual-mean transport caused by KLCES reaches 0.24–0.38 Sv (1 Sv ≡ 106 m3 s−1), accounting for 6.8%–10.8% of the upper-layer Luzon Strait transport. Altimeter-based statistics show that among ~90% of the historical KLCES events, a cyclonic eddy (CE) is immediately generated behind the AE southwest of Taiwan. Both energetics and stability analyses reveal that because of its large horizontal velocity shear southwest of Taiwan, the northern branch of KLC is strongly unstable and the barotropic instability of KLC constitutes the primary generation mechanism for the CE. After CE is generated, it quickly grows and gradually migrates southward, which in turn facilitates the detachment of AE from KLC. The intrinsic relationship between KLC and CE explains well why eddy pairs are commonly observed in the region southwest of Taiwan.

Denotes content that is immediately available upon publication as open access.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JPO-D-16-0185.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: J. Tian, tianjw@ouc.edu.cn; Z. Zhang, zzw330@ouc.edu.cn

Abstract

Sheddings of Kuroshio Loop Current (KLC) eddies in the northeastern South China Sea (SCS) are investigated using mooring arrays, multiple satellite data, and data-assimilative HYCOM products. Based on altimeter sea surface heights between 1992 and 2014, a total of 19 prominent KLC eddy shedding (KLCES) events were identified, among which four events were confirmed by the concurrent moored and satellite observations. Compared to the leaping behavior of Kuroshio, KLCES is a relatively short-duration phenomenon that primarily occurs in boreal autumn and winter. The KLC and its shedding anticyclonic eddy (AE) trap a large amount of Pacific water with high temperature–salinity and low chlorophyll concentration in the upper layer. The corresponding annual-mean transport caused by KLCES reaches 0.24–0.38 Sv (1 Sv ≡ 106 m3 s−1), accounting for 6.8%–10.8% of the upper-layer Luzon Strait transport. Altimeter-based statistics show that among ~90% of the historical KLCES events, a cyclonic eddy (CE) is immediately generated behind the AE southwest of Taiwan. Both energetics and stability analyses reveal that because of its large horizontal velocity shear southwest of Taiwan, the northern branch of KLC is strongly unstable and the barotropic instability of KLC constitutes the primary generation mechanism for the CE. After CE is generated, it quickly grows and gradually migrates southward, which in turn facilitates the detachment of AE from KLC. The intrinsic relationship between KLC and CE explains well why eddy pairs are commonly observed in the region southwest of Taiwan.

Denotes content that is immediately available upon publication as open access.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JPO-D-16-0185.s1.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: J. Tian, tianjw@ouc.edu.cn; Z. Zhang, zzw330@ouc.edu.cn

Supplementary Materials

    • Supplemental Materials (DOC 6.69 MB)
Save
  • Alford, M. H., and Coauthors, 2015: The formation and fate of internal waves in the South China Sea. Nature, 521, 6569, doi:10.1038/nature14399.

  • Caruso, M. J., G. G. Gawarkiewicz, and R. C. Beardsley, 2006: Interannual variability of the Kuroshio intrusion in the South China Sea. J. Oceanogr., 62, 559575, doi:10.1007/s10872-006-0076-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Centurioni, L. R., P. P. Niiler, and D. K. Lee, 2004: Observations of inflow of Philippine Sea surface water into the South China Sea through the Luzon Strait. J. Phys. Oceanogr., 34, 113121, doi:10.1175/1520-0485(2004)034<0113:OOIOPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, doi:10.1016/j.pocean.2011.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., Y. Hou, and X. Chu, 2011: Mesoscale eddies in the South China Sea: Mean properties, spatiotemporal variability, and impact on thermohaline structure. J. Geophys. Res., 116, C06018, doi:10.1029/2011JD016244.

    • Search Google Scholar
    • Export Citation
  • Farris, A., and M. Wimbush, 1996: Wind-induced Kuroshio intrusion into the South China Sea. J. Oceanogr., 52, 771784, doi:10.1007/BF02239465.

  • Fu, L.-L., D. B. Chelton, P.-Y. Le Traon, and R. Morrow, 2010: Eddy dynamics from satellite altimetry. Oceanography, 23, 1425, doi:10.5670/oceanog.2010.02.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, J.-S., Y. Feng, Y.-L. Yuan, and B.-H. Guo, 2013: Kuroshio Loop Current intruding into the South China Sea and its shedding eddy (in Chinese with English abstract). Oceanol. Limnol. Sin., 44, 537544.

    • Search Google Scholar
    • Export Citation
  • Huang, X., Z. Chen, W. Zhao, Z. Zhang, C. Zhou, Q. Yang, and J. Tian, 2016: An extreme internal solitary wave event observed in the northern South China Sea. Sci. Rep., 6, 30 041, doi:10.1038/srep30041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, X., Z. Zhang, X. Zhang, W. Zhao, and J. Tian, 2017: Impacts of a mesoscale eddy pair on internal solitary waves in the northern South China Sea revealed by mooring array observations. J. Phys. Oceanogr., doi:10.1175/JPO-D-16-0111.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, Y., and Q. Liu, 2004: Eddy shedding from the Kuroshio bend at Luzon Strait. J. Oceanogr., 60, 10631069, doi:10.1007/s10872-005-0014-6.

  • Jia, Y., and E. P. Chassignet, 2011: Seasonal variation of eddy shedding from the Kuroshio intrusion in the Luzon Strait. J. Oceanogr., 67, 601611, doi:10.1007/s10872-011-0060-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, Y., Q. Liu, and W. Liu, 2005: Primary study of the mechanism of eddy shedding from the Kuroshio bend in Luzon Strait. J. Oceanogr., 61, 10171027, doi:10.1007/s10872-006-0018-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., and Y. Wu, 1989: A Kuroshio Loop Current in the South China Sea? On circulation of the northeastern South China Sea (in Chinese with English abstract). J. Oceanogr. Taiwan, 8, 8995.

    • Search Google Scholar
    • Export Citation
  • Li, L., W. D. Nowlin, and J. Su, 1998: Anticyclonic rings from the Kuroshio in the South China Sea. Deep-Sea Res. I, 45, 14691482, doi:10.1016/S0967-0637(98)00026-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Metzger, E. J., and H. E. Hurlburt, 2001: The nondeterministic nature of Kuroshio penetration and eddy shedding in the South China Sea. J. Phys. Oceanogr., 31, 17121732, doi:10.1175/1520-0485(2001)031<1712:TNNOKP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nan, F., H. Xue, F. Chai, L. Shi, M. Shi, and P. Guo, 2011a: Identification of different types of Kuroshio intrusion into the South China Sea. Ocean Dyn., 61, 12911304, doi:10.1007/s10236-011-0426-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nan, F., H. Xue, P. Xiu, F. Chai, M. Shi, and P. Guo, 2011b: Oceanic eddy formation and propagation southwest of Taiwan. J. Geophys. Res., 116, C12045, doi:10.1029/2011JC007386.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oey, L.-Y., 2008: Loop Current and deep eddies. J. Phys. Oceanogr., 38, 14261449, doi:10.1175/2007JPO3818.1.

  • Oey, L.-Y., T. Ezer, and H. J. Lee, 2005: Loop Current, rings, and related circulation in the Gulf of Mexico: A review of numerical models and future challenges. Circulation in the Gulf of Mexico: Observations and Models, Geophys. Monogr., Vol. 161, Amer. Geophys. Union, 31–56.

    • Crossref
    • Export Citation
  • Park, J.-H., and D. Farmer, 2013: Effects of Kuroshio intrusions on nonlinear internal waves in the South China Sea during winter. J. Geophys. Res. Oceans, 118, 70817094, doi:10.1002/2013JC008983.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer-Verlag, 710 pp.

    • Crossref
    • Export Citation
  • Qiu, B., and S. Chen, 2004: Seasonal modulation in the eddy field of the South Pacific Ocean. J. Phys. Oceanogr., 34, 15151527, doi:10.1175/1520-0485(2004)034<1515:SMITEF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., S. Chen, P. Klein, C. Ubelmann, L.-L. Fu, and H. Sasaki, 2016: Reconstructability of three-dimensional upper-ocean circulation from SWOT sea surface height measurements. J. Phys. Oceanogr., 46, 947963, doi:10.1175/JPO-D-15-0188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, T., 2000: Upper-layer circulation in the South China Sea. J. Phys. Oceanogr., 30, 14501460, doi:10.1175/1520-0485(2000)030<1450:ULCITS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, T., H. Mitsudera, and T. Yamagata, 2000: Intrusion of the North Pacific waters into the South China Sea. J. Geophys. Res., 105, 64156424, doi:10.1029/1999JC900323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rio, M.-H., P. Schaeffer, G. Moreaux, J.-M. Lemoine, and E. Bronner, 2009: A new mean dynamic topography computed over the global ocean from GRACE data, altimetry and in situ measurements. CLS/CNES, accessed 10 June 2016. [Available online at http://www.aviso.oceanobs.com/fileadmin/documents/data/products/auxiliary/MDT_Cnes-CLS09_poster_Oceanobs09.pdf.]

  • Rio, M.-H., S. Mulet, and N. Picot, 2013: New global mean dynamic topography from a GOCE geoid model, altimeter measurements and oceanographic in situ data. Proc. ESA Living Planet Symp., Edinburgh, Scotland, ESA. [Available online at http://www.aviso.altimetry.fr/fileadmin/documents/OSTST/2013/oral/mulet_MDT_CNES_CLS13.pdf.]

  • Schmitz, W. J., Jr., 2005: Cyclones and westward propagation in the shedding of anticyclonic rings from the Loop Current. Circulation in the Gulf of Mexico: Observations and Models, Geophys. Monogr., Vol. 161, Amer. Geophys. Union, 241–261.

    • Crossref
    • Export Citation
  • Sheremet, V. A., 2001: Hysteresis of a western boundary current leaping across a gap. J. Phys. Oceanogr., 31, 12471259, doi:10.1175/1520-0485(2001)031<1247:HOAWBC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, J. L., 2004: Overview of the South China Sea circulation and its influence on the coastal physical oceanography near the Pearl River estuary. Cont. Shelf Res., 24, 17451760, doi:10.1016/j.csr.2004.06.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Z., Z. Zhang, W. Zhao, and J. Tian, 2016: Interannual modulation of eddy kinetic energy in the northeastern South China Sea. J. Geophys. Res. Oceans, 121, 31903201, doi:10.1002/2015JC011497.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, J., Q. Yang, and W. Zhao, 2009: Enhanced diapycnal mixing in the South China Sea. J. Phys. Oceanogr., 39, 31913203, doi:10.1175/2009JPO3899.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Volkov, D. L., G. Larnicol, and J. Dorandeu, 2007: Improving the quality of satellite altimetry data over continental shelves. J. Geophys. Res., 112, C06020, doi:10.1029/2006JC003765.

    • Search Google Scholar
    • Export Citation
  • Wang, D., H. Z. Xu, J. Lin, and J. Y. Hu, 2008: Anticyclonic eddies in the northeastern South China Sea during winter 2003/2004. J. Oceanogr., 64, 925935, doi:10.1007/s10872-008-0076-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., J. Su, and P. Chu, 2003: Mesoscale eddies in the South China Sea observed with altimeter data. Geophys. Res. Lett., 30, 2121, doi:10.1029/2003GL018532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., D. Chen, and J. Su, 2008: Winter eddy genesis in the eastern South China Sea due to orographic wind jets. J. Phys. Oceanogr., 38, 726732, doi:10.1175/2007JPO3868.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., S.-P. Xie, T. Qu, and R. X. Huang, 2011: Deep South China Sea circulation. Geophys. Res. Lett., 38, L05601, doi:10.1029/2010GL046626.

  • Wu, C.-R., and Y.-C. Hsin, 2012: The forcing mechanism leading to the Kuroshio intrusion into the South China Sea. J. Geophys. Res., 117, C07015, doi:10.1029/2012JC007968.

    • Search Google Scholar
    • Export Citation
  • Xie, J., Y. He, Z. Chen, J. Xu, and S. Cai, 2015: Simulations of internal solitary wave interactions with mesoscale eddies in the northeastern South China Sea. J. Phys. Oceanogr., 45, 29592978, doi:10.1175/JPO-D-15-0029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiu, P., F. Chai, L. Shi, H. Xue, and Y. Chao, 2010: A census of eddy activities in the South China Sea during 1993–2007. J. Geophys. Res., 115, C03012, doi:10.1029/2009JC005657.

    • Search Google Scholar
    • Export Citation
  • Xu, F.-H., and L.-Y. Oey, 2014: State analysis using the local ensemble transform Kalman filter (LETKF) and the three-layer circulation structure of the Luzon Strait and the South China Sea. Ocean Dyn., 64, 905923, doi:10.1007/s10236-014-0720-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, H., and Q. Liu, 2003: Forced Rossby wave in the northern South China Sea. Deep-Sea Res. I, 50, 917926, doi:10.1016/S0967-0637(03)00074-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Q., W. Zhao, X. Liang, and J. Tian, 2016: Three-dimensional distribution of turbulent mixing in the South China Sea. J. Phys. Oceanogr., 46, 769788, doi:10.1175/JPO-D-14-0220.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, D., and Z. Wang, 2011: Hysteresis and dynamics of a western boundary current flowing by a gap forced by impingement of mesoscale eddies. J. Phys. Oceanogr., 41, 878888, doi:10.1175/2010JPO4489.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, D., W. Han, and D. Hu, 2006: Surface Kuroshio path in the Luzon Strait area derived from satellite remote sensing data. J. Geophys. Res., 111, C11007, doi:10.1029/2005JC003412.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, D., W. Han, and D. Hu, 2007: Anti-cyclonic eddies northwest of Luzon in summer–fall observed by satellite altimeters. Geophys. Res. Lett., 34, L13610, doi:10.1029/2007GL029401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., W. Zhao, J. Tian, and X. Liang, 2013: A mesoscale eddy pair southwest of Taiwan and its influence on deep circulation. J. Geophys. Res. Oceans, 118, 64796494, doi:10.1002/2013JC008994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., W. Zhao, J. Tian, Q. Yang, and T. Qu, 2015: Spatial structure and temporal variability of the zonal flow in the Luzon Strait. J. Geophys. Res. Oceans, 120, 759776, doi:10.1002/2014JC010308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., J. Tian, B. Qiu, W. Zhao, P. Chang, D. Wu, and X. Wan, 2016: Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea. Sci. Rep., 6, 24 349, doi:10.1038/srep24349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, Q., C. Tai, J. Hu, H. Lin, R. Zhang, F. Su, and X. Yang, 2011: Satellite altimeter observations of nonlinear Rossby eddy–Kuroshio interaction at the Luzon Strait. J. Oceanogr., 67, 365376, doi:10.1007/s10872-011-0035-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1484 595 76
PDF Downloads 1205 395 29